University of Basel, Department of Environmental Sciences, Zoology, Basel, Switzerland.
PLoS Genet. 2023 Feb 2;19(2):e1010570. doi: 10.1371/journal.pgen.1010570. eCollection 2023 Feb.
Specific interactions of host and parasite genotypes can lead to balancing selection, maintaining genetic diversity within populations. In order to understand the drivers of such specific coevolution, it is necessary to identify the molecular underpinnings of these genotypic interactions. Here, we investigate the genetic basis of resistance in the crustacean host, Daphnia magna, to attachment and subsequent infection by the bacterial parasite, Pasteuria ramosa. We discover a single locus with Mendelian segregation (3:1 ratio) with resistance being dominant, which we call the F locus. We use QTL analysis and fine mapping to localize the F locus to a 28.8-kb region in the host genome, adjacent to a known resistance supergene. We compare the 28.8-kb region in the two QTL parents to identify differences between host genotypes that are resistant versus susceptible to attachment and infection by the parasite. We identify 13 genes in the region, from which we highlight eight biological candidates for the F locus, based on presence/absence polymorphisms and differential gene expression. The top candidates include a fucosyltransferase gene that is only present in one of the two QTL parents, as well as several Cladoceran-specific genes belonging to a large family that is represented in multiple locations of the host genome. Fucosyltransferases have been linked to resistance in previous studies of Daphnia-Pasteuria and other host-parasite systems, suggesting that P. ramosa spore attachment could be mediated by changes in glycan structures on D. magna cuticle proteins. The Cladoceran-specific candidate genes suggest a resistance strategy that relies on gene duplication. Our results add a new locus to a growing genetic model of resistance in the D. magna-P. ramosa system. The identified candidate genes will be used in future functional genetic studies, with the ultimate aim to test for cycles of allele frequencies in natural populations.
宿主和寄生虫基因型的特定相互作用可以导致平衡选择,维持种群内的遗传多样性。为了了解这种特定协同进化的驱动因素,有必要确定这些基因型相互作用的分子基础。在这里,我们研究了甲壳类宿主 Daphnia magna 对细菌寄生虫 Pasteuria ramosa 的附着和随后感染的抗性的遗传基础。我们发现了一个具有孟德尔分离(3:1 比例)的单一基因座,抗性是显性的,我们称之为 F 基因座。我们使用 QTL 分析和精细映射将 F 基因座定位到宿主基因组中的一个 28.8-kb 区域,该区域紧邻已知的抗性超基因。我们比较了两个 QTL 亲本的 28.8-kb 区域,以确定对寄生虫附着和感染具有抗性和易感性的宿主基因型之间的差异。我们在该区域鉴定了 13 个基因,根据存在/缺失多态性和差异基因表达,我们从这些基因中突出了 8 个 F 基因座的生物学候选基因。候选基因包括仅存在于两个 QTL 亲本之一的岩藻糖基转移酶基因,以及几个属于在宿主基因组多个位置都有代表的大型家族的甲壳类动物特异性基因。岩藻糖基转移酶已在以前的 Daphnia-Pasteuria 和其他宿主-寄生虫系统的研究中与抗性相关,这表明 P. ramosa 孢子附着可能是通过 D. magna 表皮蛋白糖链结构的变化介导的。甲壳类动物特异性候选基因表明了一种依赖于基因复制的抗性策略。我们的研究结果为 D. magna-P. ramosa 系统中不断增长的抗性遗传模型增加了一个新的基因座。鉴定出的候选基因将用于未来的功能遗传研究,最终目的是在自然种群中测试等位基因频率的循环。