Suppr超能文献

使用生成模型进行调节肽设计:钙调神经磷酸酶蛋白-蛋白相互作用抑制剂的发现和表征。

Funneling modulatory peptide design with generative models: Discovery and characterization of disruptors of calcineurin protein-protein interactions.

机构信息

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

PLoS Comput Biol. 2023 Feb 2;19(2):e1010874. doi: 10.1371/journal.pcbi.1010874. eCollection 2023 Feb.

Abstract

Design of peptide binders is an attractive strategy for targeting "undruggable" protein-protein interfaces. Current design protocols rely on the extraction of an initial sequence from one known protein interactor of the target protein, followed by in-silico or in-vitro mutagenesis-based optimization of its binding affinity. Wet lab protocols can explore only a minor portion of the vast sequence space and cannot efficiently screen for other desirable properties such as high specificity and low toxicity, while in-silico design requires intensive computational resources and often relies on simplified binding models. Yet, for a multivalent protein target, dozens to hundreds of natural protein partners already exist in the cellular environment. Here, we describe a peptide design protocol that harnesses this diversity via a machine learning generative model. After identifying putative natural binding fragments by literature and homology search, a compositional Restricted Boltzmann Machine is trained and sampled to yield hundreds of diverse candidate peptides. The latter are further filtered via flexible molecular docking and an in-vitro microchip-based binding assay. We validate and test our protocol on calcineurin, a calcium-dependent protein phosphatase involved in various cellular pathways in health and disease. In a single screening round, we identified multiple 16-length peptides with up to six mutations from their closest natural sequence that successfully interfere with the binding of calcineurin to its substrates. In summary, integrating protein interaction and sequence databases, generative modeling, molecular docking and interaction assays enables the discovery of novel protein-protein interaction modulators.

摘要

设计肽配体是一种有吸引力的策略,可用于靶向“不可成药”的蛋白质-蛋白质界面。目前的设计方案依赖于从目标蛋白质的一个已知蛋白质相互作用者中提取初始序列,然后通过计算机模拟或基于体外诱变的方法优化其结合亲和力。湿实验室方案只能探索广阔序列空间的一小部分,并且不能有效地筛选其他理想的特性,如高特异性和低毒性,而计算机设计需要密集的计算资源,并且经常依赖于简化的结合模型。然而,对于多价蛋白质靶标,在细胞环境中已经存在数十到数百种天然蛋白质伴侣。在这里,我们描述了一种肽设计方案,通过机器学习生成模型利用这种多样性。通过文献和同源搜索识别出假定的天然结合片段后,训练和采样组成受限玻尔兹曼机以产生数百种不同的候选肽。然后通过灵活的分子对接和基于体外微芯片的结合测定进一步筛选后者。我们在钙调神经磷酸酶上验证和测试了我们的方案,钙调神经磷酸酶是一种参与健康和疾病中各种细胞途径的钙依赖性蛋白磷酸酶。在一个单一的筛选轮中,我们从其最接近的天然序列中鉴定出多达六个突变的多个 16 长度肽,这些肽成功干扰了钙调神经磷酸酶与其底物的结合。总之,整合蛋白质相互作用和序列数据库、生成建模、分子对接和相互作用测定可用于发现新型蛋白质-蛋白质相互作用调节剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f342/9928118/c2d2f698d977/pcbi.1010874.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验