Suppr超能文献

基于机器学习的进化和物理启发的蛋白质设计:当前和未来的协同作用。

Machine learning for evolutionary-based and physics-inspired protein design: Current and future synergies.

机构信息

Laboratory of Physics of the Ecole Normale Supérieure, PSL Research, CNRS UMR 8023, Sorbonne Université, Université de Paris, Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.

Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France.

出版信息

Curr Opin Struct Biol. 2023 Jun;80:102571. doi: 10.1016/j.sbi.2023.102571. Epub 2023 Mar 21.

Abstract

Computational protein design facilitates the discovery of novel proteins with prescribed structure and functionality. Exciting designs were recently reported using novel data-driven methodologies that can be roughly divided into two categories: evolutionary-based and physics-inspired approaches. The former infer characteristic sequence features shared by sets of evolutionary-related proteins, such as conserved or coevolving positions, and recombine them to generate candidates with similar structure and function. The latter approaches estimate key biochemical properties, such as structure free energy, conformational entropy, or binding affinities using machine learning surrogates, and optimize them to yield improved designs. Here, we review recent progress along both tracks, discuss their strengths and weaknesses, and highlight opportunities for synergistic approaches.

摘要

计算蛋白质设计有助于发现具有规定结构和功能的新型蛋白质。最近使用新的基于数据的方法报道了令人兴奋的设计,这些方法大致可以分为两类:基于进化的方法和受物理启发的方法。前者推断出进化相关蛋白质组中共享的特征序列特征,例如保守或共进化的位置,并将它们重组以产生具有相似结构和功能的候选物。后者方法使用机器学习替代物估计关键生化特性,如结构自由能、构象熵或结合亲和力,并对其进行优化以产生改进的设计。在这里,我们回顾了这两个方面的最新进展,讨论了它们的优缺点,并强调了协同方法的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验