Suppr超能文献

用于大规模水下连续体机器人结构的模块化变形晶格

Modular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures.

作者信息

Parra Rubio Alfonso, Fan Dixia, Jenett Benjamin, Del Águila Ferrandis José, Tourlomousis Filippos, Abdel-Rahman Amira, Preiss David, Zemánek Jiri, Triantafyllou Michael, Gershenfeld Neil

机构信息

Center for Bits and Atoms of USA, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Intelligent and Informational Fluid Mechanics Laboratory, Westlake University, Hangzhou, China.

出版信息

Soft Robot. 2023 Aug;10(4):724-736. doi: 10.1089/soro.2022.0117. Epub 2023 Feb 2.

Abstract

In this study, we present a method to construct meter-scale deformable structures for underwater robotic applications by discretely assembling mechanical metamaterials. We address the challenge of scaling up nature-like deformable structures while remaining structurally efficient by combining rigid and compliant facets to form custom unit cells that assemble into lattices. The unit cells generate controlled local anisotropies that architect the global deformation of the robotic structure. The resulting flexibility allows better unsteady flow control that enables highly efficient propulsion and optimized force profile manipulations. We demonstrate the utility of this approach in two models. The first is a morphing beam snake-like robot that can generate thrust at specific anguilliform swimming parameters. The second is a morphing surface hydrofoil that, when compared with a rigid wing at the same angles of attack (AoAs), can increase the lift coefficient up to 0.6. In addition, in lower AoAs, the ratio improves by 5 times, whereas in higher angles it improves by 1.25 times. The resulting hydrodynamic performance demonstrates the potential to achieve accessible, scalable, and simple to design and assemble morphing structures for more efficient and effective future ocean exploration and exploitation.

摘要

在本研究中,我们提出了一种通过离散组装机械超材料来构建用于水下机器人应用的米级可变形结构的方法。我们通过结合刚性和柔性面来形成定制的单元细胞,这些单元细胞组装成晶格,从而解决了扩大自然类可变形结构规模同时保持结构效率的挑战。单元细胞产生可控的局部各向异性,从而构建机器人结构的全局变形。由此产生的灵活性允许更好的非定常流动控制,从而实现高效推进和优化的力分布操纵。我们在两个模型中展示了这种方法的实用性。第一个是变形梁蛇形机器人,它可以在特定的鳗形游泳参数下产生推力。第二个是变形表面水翼,与相同攻角(AoA)下的刚性翼相比,它可以将升力系数提高到0.6。此外,在较低攻角下,该比率提高5倍,而在较高角度下提高1.25倍。由此产生的水动力性能表明,有可能实现可访问、可扩展且易于设计和组装的变形结构,以实现更高效、更有效的未来海洋勘探和开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38e7/10442689/90ec36de0e1c/soro.2022.0117_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验