Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italia.
Innovative Technology Laboratories, AGC Inc., Yokohama, Kanagawa 230-0045, Japan.
J Phys Chem Lett. 2023 Feb 16;14(6):1411-1417. doi: 10.1021/acs.jpclett.2c03563. Epub 2023 Feb 2.
Metadynamics simulations driven by using two X-ray diffraction peaks identified three alternative crystallization pathways of the lithium disilicate crystal from the melt. The most favorable one passes through the formation of disordered layered structures undergoing internal ordering in a second step. The second pathway involves the formation of phase-separated structures composed of nuclei of β-cristobalite crystals surrounded by lithium-rich phases in which metasilicate chains are formed. The conversion of these structures to the stable lithium disilicate crystal involves an intermediate structure whose silicate layers are connected by silicate rings with the energy barrier of 2.5 kJ/mol per formula unit (f.u.). The third pathway is highly unlikely because of the huge energy barrier involved (20 kJ/mol per f.u.). This path also involves the passage through a phase-separated structure of an indefinite silica region surrounded mainly by amorphous lithium oxide.
使用两个 X 射线衍射峰驱动的元动力学模拟确定了锂硅灰石晶体从熔体中结晶的三种替代途径。最有利的途径是通过无序层状结构的形成,在第二步中经历内部有序化。第二种途径涉及相分离结构的形成,由β-方石英晶体的核组成,周围是富锂相,其中形成了偏硅酸链。这些结构向稳定的锂硅灰石晶体的转化涉及一种中间结构,其硅酸盐层通过硅酸盐环连接,每个单位(f.u.)的能量势垒为 2.5 kJ/mol。由于涉及到巨大的能量势垒(每个 f.u. 20 kJ/mol),第三种途径极不可能。这条途径还涉及通过主要由无定形氧化锂包围的不定形二氧化硅区域的相分离结构的通过。