Suppr超能文献

KFPredict:一种基于关键特征融合的糖尿病集成学习预测框架。

KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features.

作者信息

Qi Huamei, Song Xiaomeng, Liu Shengzong, Zhang Yan, Wong Kelvin K L

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, China.

School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, 410075, China.

出版信息

Comput Methods Programs Biomed. 2023 Apr;231:107378. doi: 10.1016/j.cmpb.2023.107378. Epub 2023 Jan 26.

Abstract

BACKGROUND AND OBJECTIVE

Diabetes is a disease that requires early detection and early treatment, and complications are likely to occur in late stages of the disease, threatening the life of patients. Therefore, in order to diagnose diabetic patients as early as possible, it is necessary to establish a model that can accurately predict diabetes.

METHODOLOGY

This paper proposes an ensemble learning framework: KFPredict, which combines multi-input models with key features and machine learning algorithms. We first propose a multi-input neural network model (KF_NN) that fuses key features and uses a decision tree-based selection recursive feature elimination algorithm and correlation coefficient method to screen out the key feature inputs and secondary feature inputs in the model. We then ensemble KF_NN with three machine learning algorithms (i.e., Support Vector Machine, Random Forest and K-Nearest Neighbors) for soft voting to form our predictive classifier for diabetes prediction.

RESULTS

Our framework demonstrates good prediction results on the test set with a sensitivity of 0.85, a specificity of 0.98, and an accuracy of 93.5%. Compared with the single prediction method KFPredict, the accuracy is up to 18.18% higher. Concurrently, we also compared KFPredict with the existing prediction methods. It still has good prediction performance, and the accuracy rate is improved by up to 14.93%.

CONCLUSION

This paper constructs a diabetes prediction framework that combines multi-input models with key features and machine learning algorithms. Taking tthe PIMA diabetes dataset as the test data, the experiment shows that the framework presents good prediction results.

摘要

背景与目的

糖尿病是一种需要早期检测和治疗的疾病,在疾病后期可能会出现并发症,威胁患者生命。因此,为了尽早诊断糖尿病患者,有必要建立一个能够准确预测糖尿病的模型。

方法

本文提出了一种集成学习框架:KFPredict,它将多输入模型与关键特征和机器学习算法相结合。我们首先提出了一种多输入神经网络模型(KF_NN),该模型融合关键特征,并使用基于决策树的选择递归特征消除算法和相关系数方法筛选出模型中的关键特征输入和次要特征输入。然后,我们将KF_NN与三种机器学习算法(即支持向量机、随机森林和K近邻)进行集成,进行软投票,形成我们用于糖尿病预测的预测分类器。

结果

我们的框架在测试集上显示出良好的预测结果,灵敏度为0.85,特异性为0.98,准确率为93.5%。与单一预测方法KFPredict相比,准确率提高了18.18%。同时,我们还将KFPredict与现有的预测方法进行了比较。它仍然具有良好的预测性能,准确率提高了14.93%。

结论

本文构建了一个将多输入模型与关键特征和机器学习算法相结合的糖尿病预测框架。以PIMA糖尿病数据集作为测试数据,实验表明该框架呈现出良好的预测结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验