文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于软投票分类器和可解释 AI 的糖尿病预测集成方法。

An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI.

机构信息

Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh.

Department of Computer Science, University of York, Deramore Lane, Heslington, York YO10 5GH, UK.

出版信息

Sensors (Basel). 2022 Sep 25;22(19):7268. doi: 10.3390/s22197268.


DOI:10.3390/s22197268
PMID:36236367
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9571784/
Abstract

Diabetes is a chronic disease that continues to be a primary and worldwide health concern since the health of the entire population has been affected by it. Over the years, many academics have attempted to develop a reliable diabetes prediction model using machine learning (ML) algorithms. However, these research investigations have had a minimal impact on clinical practice as the current studies focus mainly on improving the performance of complicated ML models while ignoring their explainability to clinical situations. Therefore, the physicians find it difficult to understand these models and rarely trust them for clinical use. In this study, a carefully constructed, efficient, and interpretable diabetes detection method using an explainable AI has been proposed. The Pima Indian diabetes dataset was used, containing a total of 768 instances where 268 are diabetic, and 500 cases are non-diabetic with several diabetic attributes. Here, six machine learning algorithms (artificial neural network (ANN), random forest (RF), support vector machine (SVM), logistic regression (LR), AdaBoost, XGBoost) have been used along with an ensemble classifier to diagnose the diabetes disease. For each machine learning model, global and local explanations have been produced using the Shapley additive explanations (SHAP), which are represented in different types of graphs to help physicians in understanding the model predictions. The balanced accuracy of the developed weighted ensemble model was 90% with a F1 score of 89% using a five-fold cross-validation (CV). The median values were used for the imputation of the missing values and the synthetic minority oversampling technique (SMOTETomek) was used to balance the classes of the dataset. The proposed approach can improve the clinical understanding of a diabetes diagnosis and help in taking necessary action at the very early stages of the disease.

摘要

糖尿病是一种慢性疾病,由于它影响了整个人口的健康,因此一直是一个主要的全球性健康问题。多年来,许多学者试图使用机器学习 (ML) 算法开发可靠的糖尿病预测模型。然而,由于当前的研究主要集中在提高复杂 ML 模型的性能上,而忽略了它们对临床情况的可解释性,这些研究对临床实践的影响微乎其微。因此,医生们发现很难理解这些模型,很少信任它们用于临床使用。在这项研究中,提出了一种使用可解释 AI 的精心构建、高效且可解释的糖尿病检测方法。使用了 Pima 印度糖尿病数据集,其中包含总共 768 个实例,其中 268 个是糖尿病患者,500 个是非糖尿病患者,有几个糖尿病属性。在这里,使用了六种机器学习算法(人工神经网络 (ANN)、随机森林 (RF)、支持向量机 (SVM)、逻辑回归 (LR)、AdaBoost、XGBoost)以及集成分类器来诊断糖尿病疾病。对于每个机器学习模型,使用 Shapley 加法解释 (SHAP) 生成了全局和局部解释,这些解释以不同类型的图表表示,以帮助医生理解模型预测。使用五折交叉验证 (CV) 开发的加权集成模型的平衡准确率为 90%,F1 得分为 89%。中位数用于缺失值的插补,并且使用合成少数过采样技术 (SMOTETomek) 来平衡数据集的类。该方法可以提高对糖尿病诊断的临床理解,并有助于在疾病的早期阶段采取必要的行动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/679c8573237e/sensors-22-07268-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/247691c0b890/sensors-22-07268-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/1998b3b21b98/sensors-22-07268-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/90de17e24de6/sensors-22-07268-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/c02d23052dca/sensors-22-07268-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/cbe72f0cce28/sensors-22-07268-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/6f1d90b1a3ab/sensors-22-07268-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/b15f4e12e254/sensors-22-07268-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/8448c2c4e923/sensors-22-07268-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/805b9f535c49/sensors-22-07268-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/5bedd39583fd/sensors-22-07268-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/b41ea25ed735/sensors-22-07268-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/a41dbfc7a77b/sensors-22-07268-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/d09b1a687728/sensors-22-07268-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/679c8573237e/sensors-22-07268-g014a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/247691c0b890/sensors-22-07268-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/1998b3b21b98/sensors-22-07268-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/90de17e24de6/sensors-22-07268-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/c02d23052dca/sensors-22-07268-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/cbe72f0cce28/sensors-22-07268-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/6f1d90b1a3ab/sensors-22-07268-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/b15f4e12e254/sensors-22-07268-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/8448c2c4e923/sensors-22-07268-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/805b9f535c49/sensors-22-07268-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/5bedd39583fd/sensors-22-07268-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/b41ea25ed735/sensors-22-07268-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/a41dbfc7a77b/sensors-22-07268-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/d09b1a687728/sensors-22-07268-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0087/9571784/679c8573237e/sensors-22-07268-g014a.jpg

相似文献

[1]
An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI.

Sensors (Basel). 2022-9-25

[2]
Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.

Comput Methods Programs Biomed. 2022-6

[3]
Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.

BMC Bioinformatics. 2023-9-12

[4]
Responsible AI for cardiovascular disease detection: Towards a privacy-preserving and interpretable model.

Comput Methods Programs Biomed. 2024-9

[5]
KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features.

Comput Methods Programs Biomed. 2023-4

[6]
A proposed technique for predicting heart disease using machine learning algorithms and an explainable AI method.

Sci Rep. 2024-10-7

[7]
Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease.

Comput Methods Programs Biomed. 2023-6

[8]
Diabetes prediction using machine learning and explainable AI techniques.

Healthc Technol Lett. 2022-12-14

[9]
Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.

BMC Med Inform Decis Mak. 2022-10-25

[10]
Interpretable machine learning for dermatological disease detection: Bridging the gap between accuracy and explainability.

Comput Biol Med. 2024-9

引用本文的文献

[1]
Explainable AI in early autism detection: a literature review of interpretable machine learning approaches.

Discov Ment Health. 2025-7-1

[2]
Sex-Specific Ensemble Models for Type 2 Diabetes Classification in the Mexican Population.

Diabetes Metab Syndr Obes. 2025-5-8

[3]
Robust predictive framework for diabetes classification using optimized machine learning on imbalanced datasets.

Front Artif Intell. 2025-1-7

[4]
A hybrid explainable model based on advanced machine learning and deep learning models for classifying brain tumors using MRI images.

Sci Rep. 2025-1-10

[5]
The application of explainable artificial intelligence (XAI) in electronic health record research: A scoping review.

Digit Health. 2024-10-30

[6]
Improving diabetes disease patients classification using stacking ensemble method with PIMA and local healthcare data.

Heliyon. 2024-1-19

[7]
A Mobile App That Addresses Interpretability Challenges in Machine Learning-Based Diabetes Predictions: Survey-Based User Study.

JMIR Form Res. 2023-11-13

[8]
A novel prediction model of the risk of pancreatic cancer among diabetes patients using multiple clinical data and machine learning.

Cancer Med. 2023-10

[9]
Prediction of the risk of developing end-stage renal diseases in newly diagnosed type 2 diabetes mellitus using artificial intelligence algorithms.

BioData Min. 2023-3-10

本文引用的文献

[1]
The severity prediction of the binary and multi-class cardiovascular disease - A machine learning-based fusion approach.

Comput Biol Chem. 2022-6

[2]
Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms.

Neural Comput Appl. 2022-3-24

[3]
A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Techniques.

J Healthc Eng. 2022

[4]
Forecasting the spread of the third wave of COVID-19 pandemic using time series analysis in Bangladesh.

Inform Med Unlocked. 2022

[5]
A remote healthcare monitoring framework for diabetes prediction using machine learning.

Healthc Technol Lett. 2021-5-2

[6]
A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease.

Sci Rep. 2021-1-29

[7]
A practical computerized decision support system for predicting the severity of Alzheimer's disease of an individual.

Expert Syst Appl. 2019-9-15

[8]
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.

Nat Biomed Eng. 2018-10-10

[9]
An interpretable machine learning model for diagnosis of Alzheimer's disease.

PeerJ. 2019-3-1

[10]
Type 2 diabetes.

Lancet. 2017-2-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索