Suppr超能文献

人工智能在无菌性翻修全膝关节置换术后假体周围关节感染预测中的应用。

The Use of Artificial Intelligence for the Prediction of Periprosthetic Joint Infection Following Aseptic Revision Total Knee Arthroplasty.

机构信息

Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

J Knee Surg. 2024 Jan;37(2):158-166. doi: 10.1055/s-0043-1761259. Epub 2023 Feb 2.

Abstract

Periprosthetic joint infection (PJI) following revision total knee arthroplasty (TKA) for aseptic failure is associated with poor outcomes, patient morbidity, and high health care expenditures. The aim of this study was to develop novel machine learning algorithms for the prediction of PJI following revision TKA for patients with aseptic indications for revision surgery. A single-institution database consisting of 1,432 consecutive revision TKA patients with aseptic etiologies was retrospectively identified. The patient cohort included 208 patients (14.5%) who underwent re-revision surgery for PJI. Three machine learning algorithms (artificial neural networks, support vector machines, k-nearest neighbors) were developed to predict this outcome and these models were assessed by discrimination, calibration, and decision curve analysis. This is a retrospective study. Among the three machine learning models, the neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.78), calibration, and decision curve analysis. The strongest predictors for PJI following revision TKA for aseptic reasons were prior open procedure prior to revision surgery, drug abuse, obesity, and diabetes. This study utilized machine learning as a tool for the prediction of PJI following revision TKA for aseptic failure with excellent performance. The validated machine learning models can aid surgeons in patient-specific risk stratifying to assist in preoperative counseling and clinical decision making for patients undergoing aseptic revision TKA.

摘要

假体周围关节感染(PJI)是翻修全膝关节置换术(TKA)治疗无菌性失败的常见并发症,它与不良预后、患者发病率和高额医疗费用有关。本研究旨在开发新的机器学习算法,以预测无菌性翻修 TKA 后发生 PJI 的风险。通过回顾性分析,我们确定了一个由 1432 例连续无菌性翻修 TKA 患者组成的单机构数据库。该患者队列包括 208 例(14.5%)因 PJI 而再次接受翻修手术的患者。我们开发了三种机器学习算法(人工神经网络、支持向量机、k-最近邻)来预测这一结果,并通过判别、校准和决策曲线分析评估这些模型。这是一项回顾性研究。在这三种机器学习模型中,神经网络模型在判别(接受者操作特征曲线下面积=0.78)、校准和决策曲线分析方面表现最佳。预测无菌性翻修 TKA 后发生 PJI 的最强预测因素是翻修前的开放性手术、药物滥用、肥胖和糖尿病。本研究利用机器学习作为一种工具,对无菌性翻修 TKA 后发生 PJI 的情况进行预测,表现出了优异的性能。经过验证的机器学习模型可以帮助外科医生对无菌性翻修 TKA 患者进行个体化风险分层,从而为患者提供术前咨询和临床决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验