Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China.
Collaborative Innovation Center of Chemistry for Energy Materials, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Adv Mater. 2023 Apr;35(17):e2210826. doi: 10.1002/adma.202210826. Epub 2023 Mar 15.
Rechargeable sodium-metal batteries (RSMBs) with high energy density and low cost are attracting extensive attention as promising energy-storage technologies. However, the poor cyclability and safety issues caused by unstable solid electrolyte interphase (SEI) structure and dendrite issues limit their practical application. Herein, it is theoretically predicted that constructing the Ni S /Ni P heterostructure with high work function can lower the Fermi energy level, and therefore effectively suppressing continuous electrolyte decomposition derived from the electron-tunneling effect after long-term sodiation process. Furthermore, the Ni S /Ni P heterostructure on 3D porous nickel foam (Ni S /Ni P@NF) is experimentally fabricated as an advanced Na-anode current collector. The seamless Ni S /Ni P heterostructure not only offers abundant active sites to induce uniform Na deposition and enhance ion-transport kinetics, but also facilitates the formation of stable SEI for dendrite-free sodium anode, which are confirmed by cryogenic components transmission electron microscopy tests and in situ spectroscopy characterization. As a result, the Na-composite anode (Ni S /Ni P@NF@Na) delivers stable plating/stripping process of 5000 h and high average Coulombic efficiency of 99.7% over 2500 cycles. More impressively, the assembled sodium-ion full cell displays ultralong cycle life of 10 000 cycles at 20 C. The strategy of stabilizing the sodium-metal anode gives fundamental insight into the potential construction of advanced RSMBs.
可充电钠-金属电池 (RSMB) 具有高能量密度和低成本,作为有前途的储能技术引起了广泛关注。然而,不稳定的固体电解质界面 (SEI) 结构和枝晶问题导致的循环性能差和安全问题限制了它们的实际应用。在此,从理论上预测构建具有高功函数的 Ni S/Ni P 异质结构可以降低费米能级,从而有效抑制长期钠化过程后电子隧穿效应引起的连续电解质分解。此外,实验上在 3D 多孔镍泡沫 (Ni S/Ni P@NF) 上制备了作为先进 Na 阳极集流器的 Ni S/Ni P 异质结构。无缝 Ni S/Ni P 异质结构不仅提供了丰富的活性位点来诱导均匀的 Na 沉积并增强离子输运动力学,而且有利于形成无枝晶的稳定 SEI 的 Na 阳极,这通过低温组件透射电子显微镜测试和原位光谱表征得到了证实。结果,Na 复合阳极 (Ni S/Ni P@NF@Na) 在 2500 次循环中实现了 5000 小时的稳定电镀/剥离过程和 99.7%的平均库仑效率。更令人印象深刻的是,组装的钠离子全电池在 20 C 下显示出超过 10000 次的超长循环寿命。稳定钠-金属阳极的策略为先进 RSMB 的潜在构建提供了基本的见解。