Suppr超能文献

水热辅助法合成基于 CdO 纳米粒子的分级 SnO 微花膜用于储能应用

Hydrothermal assisted synthesis of hierarchical SnO micro flowers with CdO nanoparticles based membrane for energy storage applications.

机构信息

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.

National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan; Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

出版信息

Chemosphere. 2023 Apr;321:138004. doi: 10.1016/j.chemosphere.2023.138004. Epub 2023 Jan 30.

Abstract

Hierarchical nanostructures with appropriate morphology and surface functionalities are highly desired to achieve an optimized electrochemical property for active electrode materials. This work renders the facile hydrothermal synthesis of CdO, SnO, and CdO-SnO nanocomposite, and their capacitive performance was tested. The formation of the pure samples and their composite was committed by low-temperature Raman spectroscopy and x-ray diffraction studies which revealed the tetragonal and cubic structures of CdO and SnO powder samples with good crystallinity and purity. The morphological postmortem reveals the formation of nanoparticles morphology of CdO with a highly smooth surface appearance. Besides, the SnO illustrates the morphology of the micro flowers composed of ultrathin nanosheets. More specifically, the electrochemical properties indicate the pseudocapacitive charge storage mechanism based on cyclic voltammetry and chronopotentiometry analysis. The CdO-SnO composite electrode displayed a higher capacitance due to additional pores/space offered for active sites and continuously allowed electrolyte ions to interact with the inner/outer surface of the electrode. These exciting findings led us to design and fabricate battery hybrid supercapacitors (BHSC) from CdO-SnO and activated carbon (AC), referred to as CdO-SnO//AC BHSC, attains a high power delivery (5717 W/kg), and a maximum energy density of 42 Wh/kg at low discharge rate. Noteworthy, a stable cycling performance was obtained with only 91.3% retention after 8000 cycling at a large discharge current of 10 A/g, denoting the magnificent durability of the active electrode material.

摘要

具有适当形态和表面功能的分层纳米结构对于实现活性电极材料的优化电化学性能是非常需要的。本工作提供了一种简便的水热合成 CdO、SnO 和 CdO-SnO 纳米复合材料的方法,并测试了它们的电容性能。低温拉曼光谱和 X 射线衍射研究表明,纯样品及其复合材料的形成,揭示了 CdO 和 SnO 粉末样品具有良好的结晶度和纯度的四方和立方结构。形态学研究揭示了 CdO 形成纳米颗粒形态,具有高度光滑的表面外观。此外,SnO 呈现由超薄纳米片组成的微花形态。更具体地说,电化学性能表明基于循环伏安法和恒电流电位法分析的赝电容电荷存储机制。由于 CdO-SnO 复合电极提供了更多的孔/空间用于活性位点,并且连续允许电解质离子与电极的内/外表面相互作用,因此显示出更高的电容。这些令人兴奋的发现促使我们设计并制造了由 CdO-SnO 和活性炭 (AC) 组成的电池混合超级电容器 (BHSC),称为 CdO-SnO//AC BHSC,在低放电率下可实现高功率输出(5717 W/kg)和最大能量密度 42 Wh/kg。值得注意的是,在 10 A/g 的大放电电流下经过 8000 次循环后,仅保留了 91.3%的稳定循环性能,这表明活性电极材料具有极好的耐用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验