Faculty of Mathematical Sciences and Computer, Kharazmi University, No. 50, Taleghani Ave, Tehran, Iran.
Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences and Research Center for Science and Technology in Medicine, Tehran, Iran.
BMC Med Imaging. 2023 Feb 2;23(1):21. doi: 10.1186/s12880-023-00976-w.
Quantifying the smoothness of different layers of the retina can potentially be an important and practical biomarker in various pathologic conditions like diabetic retinopathy. The purpose of this study is to develop an automated machine learning algorithm which uses support vector regression method with wavelet kernel and automatically segments two hyperreflective retinal layers (inner plexiform layer (IPL) and outer plexiform layer (OPL)) in 50 optical coherence tomography (OCT) slabs and calculates the smoothness index (SI). The Bland-Altman plots, mean absolute error, root mean square error and signed error calculations revealed a modest discrepancy between the manual approach, used as the ground truth, and the corresponding automated segmentation of IPL/ OPL, as well as SI measurements in OCT slabs. It was concluded that the constructed algorithm may be employed as a reliable, rapid and convenient approach for segmenting IPL/OPL and calculating SI in the appropriate layers.
量化视网膜不同层的平滑度在各种病理情况下(如糖尿病性视网膜病变)可能是一个重要且实用的生物标志物。本研究的目的是开发一种自动机器学习算法,该算法使用支持向量回归方法和小波核,并自动分割 50 个光学相干断层扫描 (OCT) 切片中的两个高反射视网膜层(内丛状层 (IPL) 和外丛状层 (OPL)),并计算平滑度指数 (SI)。 Bland-Altman 图、平均绝对误差、均方根误差和符号误差计算表明,手动方法(用作基准)与 IPL/OPL 的相应自动分割以及 OCT 切片中 SI 测量之间存在适度差异。得出的结论是,所构建的算法可以作为一种可靠、快速和方便的方法,用于分割 IPL/OPL 并计算适当层中的 SI。