Rodriguez Josue E, Williams Donald R, Bürkner Paul-Christian
University of California, Davis, Davis, California, USA.
NWEA, Portland, Oregon, USA.
Br J Math Stat Psychol. 2023 May;76(2):402-433. doi: 10.1111/bmsp.12299. Epub 2023 Feb 2.
Categorical moderators are often included in mixed-effects meta-analysis to explain heterogeneity in effect sizes. An assumption in tests of categorical moderator effects is that of a constant between-study variance across all levels of the moderator. Although it rarely receives serious thought, there can be statistical ramifications to upholding this assumption. We propose that researchers should instead default to assuming unequal between-study variances when analysing categorical moderators. To achieve this, we suggest using a mixed-effects location-scale model (MELSM) to allow group-specific estimates for the between-study variance. In two extensive simulation studies, we show that in terms of Type I error and statistical power, little is lost by using the MELSM for moderator tests, but there can be serious costs when an equal variance mixed-effects model (MEM) is used. Most notably, in scenarios with balanced sample sizes or equal between-study variance, the Type I error and power rates are nearly identical between the MEM and the MELSM. On the other hand, with imbalanced sample sizes and unequal variances, the Type I error rate under the MEM can be grossly inflated or overly conservative, whereas the MELSM does comparatively well in controlling the Type I error across the majority of cases. A notable exception where the MELSM did not clearly outperform the MEM was in the case of few studies (e.g., 5). With respect to power, the MELSM had similar or higher power than the MEM in conditions where the latter produced non-inflated Type 1 error rates. Together, our results support the idea that assuming unequal between-study variances is preferred as a default strategy when testing categorical moderators.
分类调节变量通常包含在混合效应元分析中,以解释效应大小的异质性。分类调节效应检验中的一个假设是,在调节变量的所有水平上,研究间方差是恒定的。尽管这一假设很少受到认真思考,但坚持这一假设可能会产生统计学后果。我们建议,研究人员在分析分类调节变量时,应默认假设研究间方差不相等。为实现这一点,我们建议使用混合效应位置尺度模型(MELSM),以便对研究间方差进行特定组估计。在两项广泛的模拟研究中,我们表明,就I型错误和统计功效而言,使用MELSM进行调节变量检验几乎不会有损失,但使用等方差混合效应模型(MEM)时可能会有严重代价。最值得注意的是,在样本量平衡或研究间方差相等的情况下,MEM和MELSM的I型错误率和功效几乎相同。另一方面,在样本量不平衡和方差不相等的情况下,MEM下的I型错误率可能会大幅膨胀或过于保守,而MELSM在大多数情况下控制I型错误方面表现相对较好。MELSM没有明显优于MEM的一个显著例外是研究数量较少的情况(例如5项)。在功效方面,在MEM产生未膨胀的I型错误率的条件下,MELSM的功效与MEM相似或更高。总之,我们的结果支持这样一种观点,即在检验分类调节变量时,默认假设研究间方差不相等是更可取的策略。