Ivancic Robert J S, Orski Sara V, Audus Debra J
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
Macromolecules. 2022;55(3). doi: 10.1021/acs.macromol.1c02271.
The structural characterization of branched polymers still poses experimental challenges despite their technological potential. This lack of clarity is egregious in linear low-density polyethylene (LLDPE), a common industrial plastic. Here, we design a coarse-grain, implicit solvent molecular dynamics model for LLDPE in 1,2,4-trichlorobenzene, a canonical good solvent, that replicates all-atom simulations and experiments. We employ this model to test the relationship between the contraction factors, the ratios of branched to linear dilute solution properties. In particular, we relate the contraction factor of the radius of gyration to that of the intrinsic viscosity and the hydrodynamic radius. The contraction exponents are constant as we vary branch length and spacing in contrast to theoretical expectations. We use this observation to develop a general theory for the dilute solution properties of linear polymers with linear side-chain branches, comb-like macromolecules, in a good solvent and validate the theory by generating master curves for LLDPE.
尽管支化聚合物具有技术潜力,但其结构表征仍面临实验挑战。这种不明确性在常见的工业塑料线性低密度聚乙烯(LLDPE)中尤为突出。在此,我们针对LLDPE在典型良溶剂1,2,4-三氯苯中设计了一种粗粒化、隐式溶剂分子动力学模型,该模型可复制全原子模拟和实验。我们利用此模型测试收缩因子之间的关系,即支化与线性稀溶液性质的比率。特别是,我们将回转半径的收缩因子与特性粘度和流体力学半径的收缩因子联系起来。与理论预期相反,当我们改变支链长度和间距时,收缩指数是恒定的。我们利用这一观察结果,为具有线性侧链支化的线性聚合物(梳状大分子)在良溶剂中的稀溶液性质建立了一个通用理论,并通过生成LLDPE的主曲线来验证该理论。