Lafont Jérôme E, Moustaghfir Sherine, Durand Anne-Laure, Mallein-Gerin Frédéric
Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique CNRS-UMR 5305, Université Claude Bernard Lyon1, University of Lyon, Lyon, France.
Front Physiol. 2023 Jan 17;14:1070241. doi: 10.3389/fphys.2023.1070241. eCollection 2023.
Epigenetics defines the modifications of the genome that do not involve a change in the nucleotide sequence of DNA. These modifications constitute a mechanism of gene regulation poorly explored in the context of cartilage physiology. They are now intensively studied by the scientific community working on articular cartilage and its related pathology such as osteoarthritis. Indeed, epigenetic regulations can control the expression of crucial gene in the chondrocytes, the only resident cells of cartilage. Some epigenetic changes are considered as a possible cause of the abnormal gene expression and the subsequent alteration of the chondrocyte phenotype (hypertrophy, proliferation, senescence…) as observed in osteoarthritic cartilage. Osteoarthritis is a joint pathology, which results in impaired extracellular matrix homeostasis and leads ultimately to the progressive destruction of cartilage. To date, there is no pharmacological treatment and the exact causes have yet to be defined. Given that the epigenetic modifying enzymes can be controlled by pharmacological inhibitors, it is thus crucial to describe the epigenetic marks that enable the normal expression of extracellular matrix encoding genes, and those associated with the abnormal gene expression such as degradative enzyme or inflammatory cytokines encoding genes. In this review, only the DNA methylation and histone modifications will be detailed with regard to normal and osteoarthritic cartilage. Although frequently referred as epigenetic mechanisms, the regulatory mechanisms involving microRNAs will not be discussed. Altogether, this review will show how this nascent field influences our understanding of the pathogenesis of OA in terms of diagnosis and how controlling the epigenetic marks can help defining epigenetic therapies.
表观遗传学定义了基因组的修饰,这些修饰不涉及DNA核苷酸序列的改变。在软骨生理学背景下,这些修饰构成了一种尚未得到充分探索的基因调控机制。目前,研究关节软骨及其相关病理学(如骨关节炎)的科学界正在对其进行深入研究。事实上,表观遗传调控可以控制软骨中唯一的驻留细胞——软骨细胞中关键基因的表达。一些表观遗传变化被认为是骨关节炎软骨中异常基因表达以及随后软骨细胞表型改变(肥大、增殖、衰老等)的可能原因。骨关节炎是一种关节疾病,会导致细胞外基质稳态受损,并最终导致软骨的渐进性破坏。迄今为止,尚无药物治疗方法,确切病因仍有待确定。鉴于表观遗传修饰酶可以被药物抑制剂控制,因此描述能够使细胞外基质编码基因正常表达的表观遗传标记以及与异常基因表达(如降解酶或炎症细胞因子编码基因)相关的表观遗传标记至关重要。在本综述中,仅将详细阐述正常软骨和骨关节炎软骨中的DNA甲基化和组蛋白修饰。虽然微小RNA相关的调控机制常被视为表观遗传机制,但本文将不对此进行讨论。总之,本综述将展示这个新兴领域如何在诊断方面影响我们对骨关节炎发病机制的理解,以及控制表观遗传标记如何有助于确定表观遗传治疗方法。