Suppr超能文献

具有高可靠性物理不可克隆函数的可打印 Epsilon 型结构晶体管阵列。

Printable Epsilon-Type Structure Transistor Arrays with Highly Reliable Physical Unclonable Functions.

机构信息

Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China.

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.

出版信息

Adv Mater. 2023 Apr;35(16):e2210621. doi: 10.1002/adma.202210621. Epub 2023 Mar 12.

Abstract

Printed electronics promises to drive the future data-intensive technologies, with its potential to fabricate novel devices over a large area with low cost on nontraditional substrates. In these emerging technologies, there exists a large digital information flow, which requires secure communication and authentication. Physical unclonable functions (PUFs) offer a promising built-in hardware-security system comparable to biometrical data, which can be constructed by device-specific intrinsic variations in the additive manufacturing process of active devices. However, printed PUFs typically exploit the inherent variation in layer thickness and roughness of active devices. The current in devices with enough significant changes to increase the robustness to external environment noise is still a challenge. Here, printable epsilon-type-structure indium tin oxide transistor arrays are demonstrated to construct high-reliability PUFs by modifying the coffee-ring structure. The epsilon-type structure improves the printing scalability, film quality, and device reliability. Furthermore, the print-induced uncertainty along the channel thickness and length can lead to changes in the carrier concentration. Notably, the randomly distributed printing droplets in a small area significantly increase this uncertainty. As a result, the PUFs exhibit near-ideal uniformity, uniqueness, randomness, and reliability. Additionally, the PUFs are resilient against machine-learning-based attacks with a prediction accuracy of only 55% without postprocessing.

摘要

印刷电子有望推动未来数据密集型技术的发展,其具有在非传统衬底上以低成本大面积制造新型器件的潜力。在这些新兴技术中,存在着大量的数字信息流,这需要安全的通信和认证。物理不可克隆函数 (PUF) 提供了一种有前途的内置硬件安全系统,可与生物识别数据相媲美,它可以通过有源器件的增材制造过程中的设备特定固有变化来构建。然而,印刷 PUF 通常利用有源器件的层厚度和粗糙度的固有变化。具有足够显著变化以提高对外部环境噪声的鲁棒性的电流仍然是一个挑战。在这里,通过修饰咖啡环结构,展示了可打印的 ε 型结构氧化铟锡晶体管阵列,以构建高可靠性 PUF。ε 型结构提高了打印的可扩展性、薄膜质量和器件可靠性。此外,沿沟道厚度和长度的打印诱导不确定性会导致载流子浓度发生变化。值得注意的是,小面积中随机分布的打印液滴显著增加了这种不确定性。结果,PUF 表现出近乎理想的均匀性、唯一性、随机性和可靠性。此外,PUF 对基于机器学习的攻击具有弹性,无需后处理即可达到 55%的预测精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验