Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
School of Computer Science, South China Normal University, Guangzhou, People's Republic of China.
J Clin Sleep Med. 2023 Jun 1;19(6):1017-1025. doi: 10.5664/jcsm.10466.
We evaluated the validity of a squeeze-and-excitation and multiscaled fusion network (SE-MSCNN) using single-lead electrocardiogram (ECG) signals for obstructive sleep apnea detection and classification.
Overnight polysomnographic data from 436 participants at the Sleep Center of the First Affiliated Hospital of Sun Yat-sen University were used to generate a new FAH-ECG dataset comprising 260, 88, and 88 single-lead ECG signal recordings for training, validation, and testing, respectively. The SE-MSCNN was employed for detection of apnea-hypopnea events from the acquired ECG segments. Sensitivity, specificity, accuracy, and F1 scores were assigned to assess algorithm performance. We also used the SE-MSCNN to estimate the apnea-hypopnea index, classify obstructive sleep apnea severity, and compare the agreement between 2 sleep technicians.
The SE-MSCNN's accuracy, sensitivity, specificity, and F1 score on the FAH-ECG dataset were 86.6%, 83.3%, 89.1%, and 0.843, respectively. Although slightly inferior to previously reported results using public datasets, it is superior to state-of-the-art open-source models. Furthermore, the SE-MSCNN had good agreement with manual scoring, such that the Spearman's correlations for the apnea-hypopnea index between the SE-MSCNN and 2 technicians were 0.93 and 0.94, respectively. Cohen's kappa scores in classifying the SE-MSCNN and the 2 sleep technicians were 0.72 and 0.78, respectively.
In this study, we validated the use of the SE-MSCNN in a clinical environment, and despite some limitations the network appeared to meet the performance standards for generalizability. Therefore, updating algorithms based on single-lead ECG signals can facilitate the development of novel wearable devices for efficient obstructive sleep apnea screening.
Yue H, Li P, Li Y, et al. Validity study of a multiscaled fusion network using single-lead electrocardiogram signals for obstructive sleep apnea diagnosis. . 2023;19(6):1017-1025.
我们评估了一种基于挤压激励和多尺度融合网络(SE-MSCNN)的有效性,该网络使用单导联心电图(ECG)信号来进行阻塞性睡眠呼吸暂停检测和分类。
来自中山大学第一附属医院睡眠中心的 436 名参与者的整夜多导睡眠图数据被用于生成一个新的 FAH-ECG 数据集,该数据集包括 260、88 和 88 个用于训练、验证和测试的单导联 ECG 信号记录。SE-MSCNN 被用于从获得的 ECG 段中检测呼吸暂停-低通气事件。敏感性、特异性、准确性和 F1 分数被用来评估算法性能。我们还使用 SE-MSCNN 来估计呼吸暂停-低通气指数,对阻塞性睡眠呼吸暂停严重程度进行分类,并比较 2 位睡眠技师之间的一致性。
SE-MSCNN 在 FAH-ECG 数据集上的准确性、敏感性、特异性和 F1 分数分别为 86.6%、83.3%、89.1%和 0.843。虽然略低于使用公共数据集报告的先前结果,但优于最先进的开源模型。此外,SE-MSCNN 与手动评分具有良好的一致性,因此 SE-MSCNN 与 2 位技师之间的呼吸暂停-低通气指数的斯皮尔曼相关系数分别为 0.93 和 0.94。SE-MSCNN 与 2 位睡眠技师在分类方面的科恩氏kappa 评分分别为 0.72 和 0.78。
在这项研究中,我们在临床环境中验证了 SE-MSCNN 的使用,尽管存在一些局限性,但该网络似乎符合可推广性的性能标准。因此,基于单导联心电图信号更新算法可以促进新型可穿戴设备的开发,以实现高效的阻塞性睡眠呼吸暂停筛查。
岳浩,李鹏,李阳等。基于单导联心电图信号的多尺度融合网络在阻塞性睡眠呼吸暂停诊断中的有效性研究。. 2023;19(6):1017-1025.