Department of Biomedical Engineering, Khulna University of Engineering & Technology, Bangladesh.
School of Information and Communication Technology, Griffith University, Gold Coast, Australia.
Comput Biol Med. 2021 Jul;134:104532. doi: 10.1016/j.compbiomed.2021.104532. Epub 2021 May 29.
Sleep apnea is a common symptomatic disease affecting nearly 1 billion people around the world. The gold standard approach for determining the severity of sleep apnea is full-night polysomnography conducted in the laboratory, which is very costly and cumbersome. In this work, we propose a novel scalogram-based convolutional neural network (SCNN) to detect obstructive sleep apnea (OSA) using single-lead electrocardiogram (ECG) signals. Firstly, we use continuous wavelet transform (CWT) to convert ECG signals into conventional scalograms. In parallel, we also apply empirical mode decomposition (EMD) to the signals to find correlated intrinsic mode functions (IMFs) and then apply CWT on the IMFs to obtain hybrid scalograms. Finally, we train a lightweight CNN model on these scalograms to extract deep features for OSA detection. Experiments on the benchmark Apnea-ECG dataset demonstrate that our proposed model results in an accuracy of 94.30%, sensitivity 94.30%, specificity 94.51%, and F1-score 95.85% in per-segment classification. Our model also achieves an accuracy of 81.86%, sensitivity 71.62%, specificity 86.05%, and F1-score 69.63% for UCDDB dataset. Furthermore, our model achieves an accuracy of 100.00% in per-recording classification for Apnea-ECG dataset. The experimental results outperform the existing OSA detection approaches using ECG signals.
睡眠呼吸暂停是一种常见的症状性疾病,影响着全球近 10 亿人。确定睡眠呼吸暂停严重程度的金标准方法是在实验室进行整夜多导睡眠图检测,但这种方法非常昂贵且繁琐。在这项工作中,我们提出了一种基于谱图的卷积神经网络(SCNN),用于使用单导联心电图(ECG)信号检测阻塞性睡眠呼吸暂停(OSA)。首先,我们使用连续小波变换(CWT)将 ECG 信号转换为常规谱图。同时,我们还应用经验模态分解(EMD)对信号进行处理,以找到相关的固有模态函数(IMF),然后在 IMF 上应用 CWT 以获得混合谱图。最后,我们在这些谱图上训练一个轻量级的 CNN 模型,以提取用于 OSA 检测的深度特征。在基准 Apnea-ECG 数据集上的实验表明,我们提出的模型在分段分类中实现了 94.30%的准确率、94.30%的灵敏度、94.51%的特异性和 95.85%的 F1 分数。在 UCDDB 数据集上,我们的模型在分段分类中也实现了 81.86%的准确率、71.62%的灵敏度、86.05%的特异性和 69.63%的 F1 分数。此外,我们的模型在 Apnea-ECG 数据集的记录分类中实现了 100.00%的准确率。实验结果优于使用 ECG 信号的现有 OSA 检测方法。