Khedr Ghada E, Fawzy Samar M, Sharafeldin Icell M, Allam Nageh K
Department of Analysis & Evaluation, Egyptian Petroleum Research Institute (EPRI) Cairo 11727 Egypt.
Energy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
Nanoscale Adv. 2024 Jun 14;6(16):4160-4166. doi: 10.1039/d4na00298a. eCollection 2024 Aug 6.
Tuning the surroundings of single-atom catalysts (SACs) has been recognized as a successful approach to enhance their electrocatalytic efficiency. In this study, we utilized density functional theory (DFT) computations to systematically investigate how the coordination environment influences the catalytic performance of individual molybdenum atoms for the nitrogen reduction reaction (NRR) to NH. Upon comparing an extensive array of coordination combinations, Mo-based SACs were found to feature a distinctive N, P-dual coordination. Specifically, MoNPG demonstrates superior performance in the conversion of nitrogen into ammonia with an exceptionally low limiting potential (-0.64 V). This MoNPG catalyst preferably follows the distal pathway, with the initial hydrogenation step (*N → *NNH) being the rate-determining step. Additionally, MoNPG exhibits the ability to suppress competing H production, showcases high thermodynamic stability, and holds significant promise for experimental preparation. These findings not only contribute to diversifying the SAC family through localized coordination control but also present cost-effective strategies for enhancing sustainable NH production.
调节单原子催化剂(SAC)的周围环境已被认为是提高其电催化效率的一种成功方法。在本研究中,我们利用密度泛函理论(DFT)计算系统地研究了配位环境如何影响单个钼原子对氮还原反应(NRR)生成NH的催化性能。在比较了大量的配位组合后,发现基于钼的SAC具有独特的N、P双配位特征。具体而言,MoNPG在将氮转化为氨方面表现出优异的性能,其极限电位极低(-0.64 V)。这种MoNPG催化剂优选遵循远端途径,初始氢化步骤(*N→*NNH)是速率决定步骤。此外,MoNPG具有抑制竞争性析氢的能力,表现出高的热力学稳定性,并且在实验制备方面具有很大的前景。这些发现不仅通过局部配位控制为SAC家族的多样化做出了贡献,而且还提出了提高可持续NH产量的经济有效策略。