Schulz Tobias, Becker Christoph, Kayser Gian
Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Killianstr. 5, 79106, Freiburg, Deutschland.
Gemeinschaftspraxis für Pathologie, Freiburg, Deutschland.
HNO. 2023 Mar;71(3):170-176. doi: 10.1007/s00106-023-01276-z. Epub 2023 Feb 3.
Malignant salivary gland tumors represent a particular diagnostic challenge due to the large number of histopathological entities, their rare occurrence, and the diverse clinical and histological presentations. The aim of this work is to investigate and compare convolutional neural networks (CNNs) as a diagnostic tool for histological diagnosis of salivary gland cancer.
From salivary gland cancer preparations of 68 patients, 118 histological slides were digitized at high resolution. These virtual sections were then divided into small image sections, and the resultant 83,819 images were sorted into four categories: background, connective tissue, non-neoplastic salivary gland tissue, and salivary gland cancer tissue. The latter category grouped the entities adenoid cystic carcinoma, adenocarcinoma (not otherwise specified), acinar cell carcinoma, basal cell carcinoma, mucoepidermoid carcinoma, and myoepithelial carcinoma. The categorized images were then processed in a training, validation, and test run by the ImageNet pretrained CNN frameworks (Inception ResNet v2, Inception v3, ResNet152, Xception) in different pixel sizes.
Accuracy values ranged from 18.8% to 84.7% across all network architectures and pixel sizes, with the Inception v3 network achieving the highest value at 500 × 500 pixels. The recall values/sensitivity reached up to 85% for different pixel sizes (Inception v3 network at 1000 × 1000 pixels). The minimum F1 score achieved was 0.07 for the Inception ResNet v2 and the Inception v3 at 100 × 100 pixels each, the maximum F1 score achieved was 0.72 for the Xception at 1000 × 1000 pixels. Inception v3 was the network with the shortest training times, and was superior to all other networks at any pixel size.
The current work was able to demonstrate the applicability of CNNs for histopathological analysis of salivary gland tumors for the first time and provide a comparison of the performance of different network architectures. The results indicate a clear potential benefit for future applications.
恶性唾液腺肿瘤由于组织病理学类型众多、发病率低以及临床和组织学表现多样,给诊断带来了特殊挑战。本研究旨在探讨和比较卷积神经网络(CNN)作为唾液腺癌组织学诊断工具的性能。
从68例唾液腺癌患者的样本中,获取了118张高分辨率组织学切片。这些虚拟切片随后被分割成小图像块,最终得到的83,819张图像被分为四类:背景、结缔组织、非肿瘤性唾液腺组织和唾液腺癌组织。后者类别包括腺样囊性癌、腺癌(未另作说明)、腺泡细胞癌、基底细胞癌、黏液表皮样癌和肌上皮癌。然后,通过ImageNet预训练的CNN框架(Inception ResNet v2、Inception v3、ResNet152、Xception)在不同像素大小下对分类后的图像进行训练、验证和测试。
在所有网络架构和像素大小下,准确率范围为18.8%至84.7%,Inception v3网络在500×500像素时达到最高值。不同像素大小下的召回率/灵敏度最高可达85%(Inception v3网络在1000×1000像素时)。Inception ResNet v2和Inception v3在100×100像素时获得的最小F1分数为0.07,Xception在1000×1000像素时获得的最大F1分数为0.72。Inception v3是训练时间最短的网络,在任何像素大小下都优于所有其他网络。
本研究首次证明了CNN在唾液腺肿瘤组织病理学分析中的适用性,并对不同网络架构的性能进行了比较。结果表明其在未来应用中有明显的潜在优势。