Suppr超能文献

用于预测印度尼西亚早产儿视网膜病变进展的风险评分模型。

A risk scoring model to predict progression of retinopathy of prematurity for Indonesia.

机构信息

Neonatology Working Group, Department of Pediatrics, Harapan Kita Women and Children Hospital, Jakarta, Indonesia.

Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia.

出版信息

PLoS One. 2023 Feb 3;18(2):e0281284. doi: 10.1371/journal.pone.0281284. eCollection 2023.

Abstract

INTRODUCTION

Retinopathy of prematurity (ROP) is a serious eye disease in preterm infants. Generally, the progression of this disease can be detected by screening infants regularly. In case of progression, treatment can be instituted to stop the progression. In Indonesia, however, not all infants are screened because the number of pediatric ophthalmologists trained to screen for ROP and provide treatment is limited. Therefore, other methods are required to identify infants at risk of developing severe ROP.

OBJECTIVE

To assess a scoring model's internal and external validity to predict ROP progression in Indonesia.

METHOD

To develop a scoring model and determine its internal validity, we used data on 98 preterm infants with ROP who had undergone one or more serial eye examinations between 2009 and 2014. For external validation, we analyzed data on 62 infants diagnosed with ROP irrespective of the stage between 2017 and 2020. Patients stemmed from one neonatal unit and three eye clinics in Jakarta, Indonesia.

RESULTS

We identified the duration of oxygen supplementation, gestational age, socio-economic status, place of birth, and oxygen saturation monitor setting as risk factors for developing ROP. We developed two models-one based on the duration of supplemental oxygen and one on the setting of the oxygen saturation monitor. The ROP risk and probabilistic models obtained the same sensitivity and specificity for progression to Type 1 ROP. The agreement, determined with the Kappa statistic, between the ROP risk model's suitability and the probabilistic model was excellent. The external validity of the ROP risk model showed 100% sensitivity, 73% specificity, 76% positive predictive value, 100% negative predictive value, positive LR +3.7, negative LR 0, 47% pre-test probability, and 77% post-test probability.

CONCLUSION

The ROP risk scoring model can help to predict which infants with first-stage ROP might show progression to severe ROP and may identify infants who require referral to a pediatric ophthalmologist for treatment.

摘要

简介

早产儿视网膜病变(ROP)是一种严重的早产儿眼部疾病。通常,通过定期对婴儿进行筛查可以检测到这种疾病的进展。如果病情进展,可以进行治疗以阻止其进展。然而,在印度尼西亚,并非所有婴儿都接受筛查,因为接受过培训以筛查 ROP 并提供治疗的儿科眼科医生数量有限。因此,需要其他方法来识别有发生严重 ROP 风险的婴儿。

目的

评估一种评分模型在印度尼西亚预测 ROP 进展的内部和外部有效性。

方法

为了开发评分模型并确定其内部有效性,我们使用了 2009 年至 2014 年间接受过一次或多次连续眼部检查的 98 例患有 ROP 的早产儿的数据。为了进行外部验证,我们分析了 2017 年至 2020 年间诊断为 ROP 且不论分期如何的 62 例婴儿的数据。患者来自印度尼西亚雅加达的一家新生儿病房和三家眼科诊所。

结果

我们确定了氧疗持续时间、胎龄、社会经济地位、出生地和氧饱和度监测仪设置作为发生 ROP 的危险因素。我们开发了两种模型——一种基于补充氧气的持续时间,另一种基于氧饱和度监测仪的设置。ROP 风险和概率模型在预测进展为 1 型 ROP 方面具有相同的敏感性和特异性。通过 Kappa 统计量确定的 ROP 风险模型适用性与概率模型之间的一致性非常好。ROP 风险模型的外部有效性显示敏感性为 100%、特异性为 73%、阳性预测值为 76%、阴性预测值为 100%、阳性似然比为 3.7、阴性似然比为 0、47%的预测试验概率和 77%的后测试验概率。

结论

ROP 风险评分模型可以帮助预测哪些患有 1 期 ROP 的婴儿可能会进展为严重 ROP,并可能识别出需要转介给儿科眼科医生进行治疗的婴儿。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be00/9897566/99ddf7a04903/pone.0281284.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验