Suppr超能文献

验证意外问题和多变量模型的开发。

Validation of the Surprise Question and the Development of a Multivariable Model.

机构信息

Department of Palliative Care (M.D.), Geisinger Medical Center, Danville, PA.

Henry Hood Research Center (E.V., A.Y.), Geisinger Medical Center, Danville, PA.

出版信息

J Pain Symptom Manage. 2023 May;65(5):456-464. doi: 10.1016/j.jpainsymman.2023.01.015. Epub 2023 Feb 1.

Abstract

CONTEXT

The Surprise Question (SQ) (would you be surprised if this patient died within a year?) is a prognostic variable explored in chronic illnesses. Validation is limited to sensitivity, specificity, and predictive values.

OBJECTIVES

Our objective is to validate the SQ in cancer patients and develop a predictive model with additional variables.

METHODS

A prospective cohort study of adult (age>18) cancer patients seen between October 1, 2019, through March 31, 2021, undergoing systemic therapies had the SQ completed by oncologists prior to each change in systemic therapy. The primary outcome was survival for one year. Secondary outcomes were predictions of survival at three, six, and nine months. Patients were grouped into negative SQ (not surprised) and positive SQ (surprised). Sensitivity, specificity, predictive values, and likelihood ratios (LR) were calculated for the SQ. Additional prognostic variables were age, gender, cancer stage, line of therapy, Charleson Comorbid Index (CCI), palliative care consultation (prior to, after the SQ, or not at all), and healthcare utilization (outpatient, inpatient, and emergency department (ED). Logistic regression and receiver operating characteristics (ROC) were used for discrimination and modeling. Akaike information criterion (AIC) was used to compare the model fit as each predictor.

RESULTS

1366 patients had 1 SQ; 784 died within a year. The SQ predicted survival at one year (P = 0.008), with a positive LR of 1.459 (95%CI 1.316-1.602) and a c-statistic of 0.565 (95%CI 0.530-0.600). Additional variables increased the c-statistic to 0.648 (95% CI 0.608-0.686). The total model best predicted survival at three months, c-statistic of 0.663 (95% CI 0.616-0.706). However, the total model c-statistic remained <0.70.

CONCLUSIONS

The SQ, as a single factor, poorly predicts survival and should not be used to alter therapies. Adding additional objective variables improved prognostication, but further refinement and external validation are needed.

摘要

背景

惊讶问题(SQ)(如果这个患者在一年内去世,你会感到惊讶吗?)是在慢性病中探索的预后变量。验证仅限于敏感性、特异性和预测值。

目的

我们的目的是验证癌症患者中的 SQ,并开发一个具有附加变量的预测模型。

方法

对 2019 年 10 月 1 日至 2021 年 3 月 31 日期间接受系统治疗的成年(年龄>18 岁)癌症患者进行前瞻性队列研究,在每次改变系统治疗前由肿瘤学家完成 SQ。主要结局是一年的生存率。次要结局是三个月、六个月和九个月的生存预测。将患者分为 SQ 阴性(不惊讶)和 SQ 阳性(惊讶)组。计算 SQ 的敏感性、特异性、预测值和似然比(LR)。附加的预后变量包括年龄、性别、癌症分期、治疗线数、Charlson 合并症指数(CCI)、姑息治疗咨询(在 SQ 之前、之后或根本没有)和医疗保健利用(门诊、住院和急诊部(ED)。使用逻辑回归和接收者操作特征(ROC)进行区分和建模。Akaike 信息准则(AIC)用于比较每个预测因子的模型拟合度。

结果

1366 例患者进行了 1 次 SQ;784 例患者在一年内死亡。SQ 预测一年生存率(P = 0.008),阳性 LR 为 1.459(95%CI 1.316-1.602),C 统计量为 0.565(95%CI 0.530-0.600)。其他变量将 C 统计量提高到 0.648(95%CI 0.608-0.686)。总模型最能预测三个月时的生存率,C 统计量为 0.663(95%CI 0.616-0.706)。然而,总模型的 C 统计量仍低于 0.70。

结论

SQ 作为单一因素,对生存率的预测能力较差,不应用于改变治疗方案。添加其他客观变量可以改善预后,但需要进一步改进和外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验