Wilke André B B, Damian Dan, Litvinova Maria, Byrne Thomas, Zardini Agnese, Poletti Piero, Merler Stefano, Mutebi John-Paul, Townsend John, Ajelli Marco
Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
Maricopa County Environmental Services, Department Vector Control Division, Phoenix, AZ, USA.
Acta Trop. 2023 Apr;240:106833. doi: 10.1016/j.actatropica.2023.106833. Epub 2023 Feb 1.
Mosquito-borne diseases are a major global public health concern and mosquito surveillance systems are essential for the implementation of effective mosquito control strategies. The objective of our study is to determine the spatiotemporal distribution of vector mosquito species in Maricopa County, AZ from 2011 to 2021, and to identify the hotspot areas for West Nile virus (WNV) and St. Louis Encephalitis virus (SLEV) transmission in 2021. The Maricopa County Mosquito Control surveillance system utilizes BG-Sentinel and EVS-CDC traps throughout the entire urban and suburban areas of the county. We estimated specific mosquito species relative abundance per unit area using the Kernel density estimator in ArcGIS 10.2. We calculated the distance between all traps in the surveillance system and created a 4 km buffer radius around each trap to calculate the extent to which each trap deviated from the mean number of Culex quinquefasciatus and Culex tarsalis collected in 2021. Our results show that vector mosquito species are widely distributed and abundant in the urban areas of Maricopa County. A total of 691,170Cx. quinquefasciatus, 542,733 Cx. tarsalis, and 292,305 Aedes aegypti were collected from 2011 to 2022. The relative abundance of Ae. aegypti was highly seasonal peaking in the third and fourth quarters of the year. Culex quinquefasciatus, on the other hand, was abundant throughout the year with several regions consistently yielding high numbers of mosquitoes. Culex tarsalis was abundant but it only reached high numbers in well-defined areas near irrigated landscapes. We also detected high levels of heterogeneity in the risk of WNV and SLEV transmission to humans disregarding traps geographical proximity. The well-defined species-specific spatiotemporal and geographical patterns found in this study can be used to inform vector control operations.
蚊媒疾病是全球主要的公共卫生问题,蚊虫监测系统对于实施有效的蚊虫控制策略至关重要。我们研究的目的是确定2011年至2021年亚利桑那州马里科帕县媒介蚊虫种类的时空分布,并确定2021年西尼罗河病毒(WNV)和圣路易斯脑炎病毒(SLEV)传播的热点地区。马里科帕县蚊虫控制监测系统在该县的整个城市和郊区使用BG-哨兵和EVS-CDC诱捕器。我们使用ArcGIS 10.2中的核密度估计器估计每单位面积特定蚊虫种类的相对丰度。我们计算了监测系统中所有诱捕器之间的距离,并在每个诱捕器周围创建了一个4公里的缓冲半径,以计算每个诱捕器与2021年收集的致倦库蚊和环跗库蚊平均数量的偏差程度。我们的结果表明,媒介蚊虫种类在马里科帕县的城市地区广泛分布且数量众多。2011年至2022年共收集到691,170只致倦库蚊、542,733只环跗库蚊和292,305只埃及伊蚊。埃及伊蚊的相对丰度具有高度季节性,在一年的第三和第四季度达到峰值。另一方面,致倦库蚊全年数量都很多,有几个地区持续产生大量蚊虫。环跗库蚊数量也很多,但仅在灌溉景观附近的明确区域达到高数量。我们还发现,无论诱捕器的地理距离如何,WNV和SLEV传播给人类的风险都存在高度异质性。本研究中发现的明确的物种特异性时空和地理模式可用于指导病媒控制行动。