Suppr超能文献

临床实施人工智能和自然语言处理相结合的质量保证计划,用于急诊科肺部结节检测。

Clinical Implementation of a Combined Artificial Intelligence and Natural Language Processing Quality Assurance Program for Pulmonary Nodule Detection in the Emergency Department Setting.

机构信息

Assistant Director of Informatics and Assistant Medical Director of Clinical Affairs, Yale Radiology, Yale Department of Radiology and Biomedical Imaging, Yale New Haven Hospital, New Haven, Connecticut; Yale Department of Radiology and Biomedical Imaging, Yale New Haven Hospital, New Haven, Connecticut.

Yale Department of Radiology and Biomedical Imaging, Yale New Haven Hospital, New Haven, Connecticut. Electronic address: https://twitter.com/DixeIrene.

出版信息

J Am Coll Radiol. 2023 Apr;20(4):438-445. doi: 10.1016/j.jacr.2022.12.016. Epub 2023 Feb 2.

Abstract

OBJECTIVE

This quality assurance study assessed the implementation of a combined artificial intelligence (AI) and natural language processing (NLP) program for pulmonary nodule detection in the emergency department setting. The program was designed to function outside of normal reading workflows to minimize radiologist interruption.

MATERIALS AND METHODS

In all, 19,246 CT examinations including at least some portion of the lung anatomy performed in the emergent setting from October 1, 2021, to June 1, 2022, were processed by the combined AI-NLP program. The program used an AI algorithm trained on 6-mm to 30-mm pulmonary nodules to analyze CT images and an NLP to analyze radiological reports. Cases flagged as negative for pulmonary nodules by the NLP but positive by the AI algorithm were classified as suspected discrepancies. Discrepancies result in secondary review of examinations for possible addenda.

RESULTS

Out of 19,246 CT examinations, 50 examinations (0.26%) resulted in secondary review, and 34 of 50 (68%) reviews resulted in addenda. Of the 34 addenda, 20 patients received instruction for new follow-up imaging. Median time to addendum was 11 hours. The majority of reviews and addenda resulted from missed pulmonary nodules on CT examinations of the abdomen and pelvis.

CONCLUSION

A background quality assurance process using AI and NLP helped improve the detection of pulmonary nodules and resulted in increased numbers of patients receiving appropriate follow-up imaging recommendations. This was achieved without disrupting in-shift radiologist workflow or causing significant delays in patient follow for the diagnosed pulmonary nodule.

摘要

目的

本质量保证研究评估了在急诊科环境中用于检测肺结节的人工智能(AI)和自然语言处理(NLP)联合程序的实施情况。该程序旨在在正常阅读工作流程之外运行,以最大程度地减少放射科医生的干扰。

材料和方法

总共对 2021 年 10 月 1 日至 2022 年 6 月 1 日期间在紧急情况下进行的至少部分包含肺部解剖结构的 19246 次 CT 检查进行了由联合 AI-NLP 程序处理。该程序使用经过训练的 AI 算法来分析 CT 图像,该算法针对 6-30mm 的肺结节进行训练,以及 NLP 来分析放射报告。如果 NLP 将报告标记为无肺结节,但 AI 算法标记为阳性,则将这些病例标记为疑似差异。差异会导致对检查进行二次审查,以寻找可能的补充内容。

结果

在 19246 次 CT 检查中,有 50 次(0.26%)导致了二次审查,其中 50 次中有 34 次(68%)的审查导致了补充内容。在 34 项补充内容中,有 20 名患者接受了新的随访影像学检查的指导。添加内容的中位数时间为 11 小时。大多数审查和补充内容是由于腹部和骨盆 CT 检查中遗漏了肺结节所致。

结论

使用 AI 和 NLP 的背景质量保证流程有助于提高肺结节的检测率,并增加了接受适当随访成像建议的患者数量。这是在不干扰当班放射科医生工作流程或导致诊断性肺结节患者的后续治疗出现显著延迟的情况下实现的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验