Suppr超能文献

KiT-GENIE,法国肾脏移植遗传学生物库。

KiT-GENIE, the French genetic biobank of kidney transplantation.

机构信息

Nantes Université, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.

CHU Nantes, Nantes Université, Service de Néphrologie-Immunologie Clinique, ITUN, F-44000, Nantes, France.

出版信息

Eur J Hum Genet. 2023 Nov;31(11):1291-1299. doi: 10.1038/s41431-023-01294-z. Epub 2023 Feb 3.

Abstract

KiT-GENIE is a monocentric DNA biobank set up to consolidate the very rich and homogeneous DIVAT French cohort of kidney donors and recipients (D/R) in order to explore the molecular factors involved in kidney transplantation outcomes. We collected DNA samples for kidney transplantations performed in Nantes, and we leveraged GWAS genotyping data for securing high-quality genetic data with deep SNP and HLA annotations through imputations and for inferring D/R genetic ancestry. Overall, the biobank included 4217 individuals (n = 1945 D + 2,272 R, including 1969 D/R pairs), 7.4 M SNPs and over 200 clinical variables. KiT-GENIE represents an accurate snapshot of kidney transplantation clinical practice in Nantes between 2002 and 2018, with an enrichment in living kidney donors (17%) and recipients with focal segmental glomerulosclerosis (4%). Recipients were predominantly male (63%), of European ancestry (93%), with a mean age of 51yo and 86% experienced their first graft over the study period. D/R pairs were 93% from European ancestry, and 95% pairs exhibited at least one HLA allelic mismatch. The mean follow-up time was 6.7 years with a hindsight up to 25 years. Recipients experienced biopsy-proven rejection and graft loss for 16.6% and 21.3%, respectively. KiT-GENIE constitutes one of the largest kidney transplantation genetic cohorts worldwide to date. It includes homogeneous high-quality clinical and genetic data for donors and recipients, hence offering a unique opportunity to investigate immunogenetic and genetic factors, as well as donor-recipient interactions and mismatches involved in rejection, graft survival, primary disease recurrence and other comorbidities.

摘要

KiT-GENIE 是一个单中心 DNA 生物库,旨在整合丰富而同质的法国 DIVAT 肾供体和受者队列(D/R),以探索与肾移植结果相关的分子因素。我们收集了在南特进行的肾移植的 DNA 样本,并利用 GWAS 基因分型数据,通过 imputation 确保高质量的遗传数据,具有深 SNP 和 HLA 注释,并推断 D/R 的遗传起源。总体而言,该生物库包括 4217 个人(n=1945 D+2272 R,包括 1969 对 D/R),740 万 SNPs 和 200 多个临床变量。KiT-GENIE 代表了 2002 年至 2018 年南特肾移植临床实践的准确写照,其中富含活体供体(17%)和局灶节段性肾小球硬化(4%)的受者。受者主要为男性(63%),欧洲血统(93%),平均年龄为 51 岁,86%在研究期间接受了首次移植物。D/R 对 93%来自欧洲血统,95%的对显示至少有一个 HLA 等位基因不匹配。平均随访时间为 6.7 年,回顾时间最长可达 25 年。受者分别经历了 16.6%和 21.3%的活检证实排斥和移植物丢失。KiT-GENIE 是迄今为止全球最大的肾移植遗传队列之一。它包括供体和受者同质的高质量临床和遗传数据,因此提供了一个独特的机会来研究免疫遗传和遗传因素,以及排斥、移植物存活、原发性疾病复发和其他合并症中涉及的供体-受者相互作用和不匹配。

相似文献

1
KiT-GENIE, the French genetic biobank of kidney transplantation.
Eur J Hum Genet. 2023 Nov;31(11):1291-1299. doi: 10.1038/s41431-023-01294-z. Epub 2023 Feb 3.
3
Association Between Donor-Recipient Biological Relationship and Allograft Outcomes After Living Donor Kidney Transplant.
JAMA Netw Open. 2021 Apr 1;4(4):e215718. doi: 10.1001/jamanetworkopen.2021.5718.
5
A Kidney Graft Survival Calculator that Accounts for Mismatches in Age, Sex, HLA, and Body Size.
Clin J Am Soc Nephrol. 2017 Jul 7;12(7):1148-1160. doi: 10.2215/CJN.09330916. Epub 2017 Jun 8.
6
Long-Term Outcome of Kidney Transplantation in Recipients with Focal Segmental Glomerulosclerosis.
Clin J Am Soc Nephrol. 2016 Nov 7;11(11):2041-2046. doi: 10.2215/CJN.03060316. Epub 2016 Oct 20.
8
Outcomes of kidney transplantation from older living donors to older recipients.
Am J Kidney Dis. 2008 Sep;52(3):541-52. doi: 10.1053/j.ajkd.2008.05.017. Epub 2008 Jul 24.
9
Immunologic Long-term Outcomes of Living-Related Kidney Transplantations Depending on the Donor-Recipient Relationship.
Transplant Proc. 2017 Dec;49(10):2265-2268. doi: 10.1016/j.transproceed.2017.11.005.

引用本文的文献

1
Description and first insights on a large genomic biobank of lung transplantation.
Eur J Hum Genet. 2025 Mar;33(3):304-311. doi: 10.1038/s41431-024-01683-y. Epub 2024 Aug 20.
2
Deep phenotyping and population-level data can help resolve genomic variants.
Eur J Hum Genet. 2023 Nov;31(11):1199-1200. doi: 10.1038/s41431-023-01483-w.

本文引用的文献

1
High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios.
Cell. 2022 Sep 1;185(18):3426-3440.e19. doi: 10.1016/j.cell.2022.08.004.
2
Extent to which array genotyping and imputation with large reference panels approximate deep whole-genome sequencing.
Am J Hum Genet. 2022 Sep 1;109(9):1653-1666. doi: 10.1016/j.ajhg.2022.07.012. Epub 2022 Aug 17.
3
Approaching Genetics Through the MHC Lens: Tools and Methods for HLA Research.
Front Genet. 2021 Dec 2;12:774916. doi: 10.3389/fgene.2021.774916. eCollection 2021.
5
Surfing the Big Data Wave: Omics Data Challenges in Transplantation.
Transplantation. 2022 Feb 1;106(2):e114-e125. doi: 10.1097/TP.0000000000003992.
7
Fast two-stage phasing of large-scale sequence data.
Am J Hum Genet. 2021 Oct 7;108(10):1880-1890. doi: 10.1016/j.ajhg.2021.08.005. Epub 2021 Sep 2.
8
A third injection of the BNT162b2 mRNA COVID-19 vaccine in kidney transplant recipients improves the humoral immune response.
Kidney Int. 2021 Nov;100(5):1132-1135. doi: 10.1016/j.kint.2021.08.017. Epub 2021 Aug 30.
9
Renal transplantation outcomes in obese patients: a French cohort-based study.
BMC Nephrol. 2021 Mar 5;22(1):79. doi: 10.1186/s12882-021-02278-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验