Suppr超能文献

工程化β-酮亚胺共价有机框架用于光催化全水解。

Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting.

机构信息

Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China.

School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.

出版信息

Nat Commun. 2023 Feb 3;14(1):593. doi: 10.1038/s41467-023-36338-x.

Abstract

Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of β-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H and O evolution activities of 9.9 and 4.8 μmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.

摘要

共价有机框架(COFs)是一种新兴的用于析氢的结晶多孔光催化剂,但 COFs 的整体水分解活性却鲜为人知。在这项工作中,我们通过系统地设计 N 位、结构和形态,首次实现了β-酮亚胺 COFs 的整体水分解活性。通过将亚纳米级铂(Pt)纳米粒子共催化剂原位掺入 COFs 纳米片的孔中,Pt@TpBpy-NS 和 Pt@TpBpy-2-NS 均表现出可见光驱动的整体水分解活性,其中 Pt@TpBpy-NS 的 H 和 O 演化活性的最优值分别为 9.9 和 4.8 μmol 在 5 h 内,最大太阳能到氢气的效率为 0.23%。系统地探讨了影响活性的关键因素,包括 N 位位置、纳米形貌和共催化剂分布。进一步的机理研究表明,COFs 中 N 位的微小差异导致电子转移和反应势垒有很大的不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d16f/9898260/bfed6cc33ea4/41467_2023_36338_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验