Cognigni Leonardo, Gobbato Thomas, Benazzi Elisabetta, Paoloni Lorenzo, Vizio Biagio Di, Bonetto Ruggero, Rigodanza Francesco, Bonetto Alessandro, Agnoli Stefano, Bonchio Marcella, Costa Paolo
Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy.
Department of Physics and Astronomy, University of Padova, Padova, Via Marzolo 8, 35131, Padova, Italy.
ChemSusChem. 2025 Mar 3;18(5):e202401977. doi: 10.1002/cssc.202401977. Epub 2024 Nov 14.
COF engineering with a built-in, high concentration of defined N-doped sites overcomes the "black-box" drawback of conventional trial-and-error N-doping methods (used in polymeric carbon nitride and graphene), that hamper a directed evolution of functional carbon interfaces based on structure-reactivity guidelines. The cutting-edge challenge is to dissect the many complex and interdependent functions that originate from reticular N-doping, including modification of the material optoelectronics, band alignments, interfacial contacts and co-localization of active-sites, producing a multiple-set of effectors that can all play a role to regulate photocatalysis. Herein, an ON-OFF gated photocatalytic H evolution (PHE) is dictated by the Pt-N-carbon active sites and probed with a dual COF platform, based on stable β-ketoenamine connectivities made of triformylphloroglucinol (Tp) as the acceptor knots and 1,4-diaminonaphtalene (Naph) or 5,8-diaminoisoquinoline (IsoQ) as donors. Our results showcase two novel COF-Naph-Tp and COF-IsoQ-Tp frameworks featuring quasi-identical slip-stacked microporous structure, and similar surface area, band gap, light harvesting envelope up to 700 nm, fluorescence emission profile/lifetime, and PEIS response at the surface/water interface (R=16-10±4 KΩ). A divergent behaviour is indeed observed for COF-IsoQ-Tp with record photoelectrochemical outputs (J=-16 μA cm, R=3 KΩ at 0.40 V vs RHE) and two orders of magnitude higher rate of PHE (11.3 mmol g h, λ>400 nm, pH 5) compared to the inactive COF-Naph-Tp analogue. It turns out that PHE is regulated by the isoquinoline residues at the COF pores where emergent Pt-N-carbon functional heterojunctions are formed upon photo-deposition of Pt nanoparticles as co-catalysts, as probed by combined XPS and DFT calculations evidence. This work sets a key guideline to direct the design of carbon-based materials encoding the installation of metal-nitrogen-carbon active sites within tailored coordination environments enabling the catalytic performance.
具有内置高浓度特定氮掺杂位点的共价有机框架(COF)工程克服了传统试错法氮掺杂方法(用于聚合氮化碳和石墨烯)的“黑箱”缺点,这些方法阻碍了基于结构 - 反应性准则的功能性碳界面的定向演化。前沿挑战在于剖析源自网状氮掺杂的许多复杂且相互依存的功能,包括材料光电子学的改性、能带排列、界面接触以及活性位点的共定位,从而产生一整套能够共同发挥作用来调节光催化的效应器。在此,基于由三甲酰基间苯三酚(Tp)作为受体节点以及1,4 - 二氨基萘(Naph)或5,8 - 二氨基异喹啉(IsoQ)作为供体构成的稳定β - 酮烯胺连接,通过双COF平台研究了由Pt - N - 碳活性位点决定的开 - 关门控光催化析氢(PHE)。我们的结果展示了两种新型的COF - Naph - Tp和COF - IsoQ - Tp框架,它们具有近乎相同的滑移堆积微孔结构,以及相似的表面积、带隙、高达700 nm的光捕获范围、荧光发射谱/寿命,以及在表面/水界面的光电化学阻抗谱响应(R = 16 - 10±4 KΩ)。与无活性的COF - Naph - Tp类似物相比,COF - IsoQ - Tp确实表现出不同的行为,具有创纪录的光电化学输出(J = -16 μA cm,在相对于可逆氢电极(RHE)为0.40 V时R = 3 KΩ)以及高出两个数量级的PHE速率(11.3 mmol g h,λ>400 nm,pH 5)。结果表明,PHE由COF孔中的异喹啉残基调节,在作为共催化剂的Pt纳米颗粒光沉积时会形成新兴的Pt - N - 碳功能异质结,这通过结合X射线光电子能谱(XPS)和密度泛函理论(DFT)计算得到证实。这项工作为指导碳基材料的设计设定了关键准则,即在定制的配位环境中编码金属 - 氮 - 碳活性位点的安装,从而实现催化性能。