Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
BMC Biol. 2023 Feb 3;21(1):21. doi: 10.1186/s12915-022-01506-w.
In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity.
We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins.
We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.
在多种人类疾病中,如多发性骨髓瘤(MM),免疫球蛋白轻链(IgLC)可以非常高的浓度产生。这会导致 IgLC 在不同组织中的病理性聚集和沉积,进而导致严重且可能致命的器官损伤。然而,IgLC 也可以高度溶解且无毒。一般认为这种不同溶解度行为的原因仅存在于 IgLC 的氨基酸序列中,并且在不同的研究中提出了各种与序列相关的生物物理特性(例如热稳定性、二聚化)作为体内聚集的主要决定因素。在这里,我们研究了 IgLC 淀粉样变性的生物物理特性。
我们引入了一种新颖而系统的工作流程,热力学和聚集指纹图谱(ThAgg-Fip),用于详细的生物物理特性分析,并将其应用于九种不同的 MM 患者来源的 IgLC。我们的致病性 IgLC 集合涵盖了以前提出的用于定义体内淀粉样变性的那些参数的整个范围;然而,实际上没有一种在患者中形成淀粉样蛋白。更令人惊讶的是,我们能够表明,在共同纯化的组织蛋白酶的影响下,我们所有的 IgLC 都能够在体外很容易地形成淀粉样纤维。
我们表明(I)体内聚集行为不太可能与任何单一的生物物理或生化参数有机制联系,(II)淀粉样变性的潜力在 IgLC 序列中广泛存在,并且不仅限于在患者中形成淀粉样纤维的那些序列。我们的发现表明,蛋白质序列、环境条件以及蛋白酶的存在和作用都决定了轻链在患者中形成淀粉样纤维的能力。