Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
Adv Sci (Weinh). 2023 Apr;10(10):e2205750. doi: 10.1002/advs.202205750. Epub 2023 Feb 3.
This work presents a general framework for quantum interference between processes that can involve different fundamental particles or quasi-particles. This framework shows that shaping input wavefunctions is a versatile and powerful tool for producing and controlling quantum interference between distinguishable pathways, beyond previously explored quantum interference between indistinguishable pathways. Two examples of quantum interference enabled by shaping in interactions between free electrons, bound electrons, and photons are presented: i) the vanishing of the zero-loss peak by destructive quantum interference when a shaped electron wavepacket couples to light, under conditions where the electron's zero-loss peak otherwise dominates; ii) quantum interference between free electron and atomic (bound electron) spontaneous emission processes, which can be significant even when the free electron and atom are far apart, breaking the common notion that a free electron and an atom must be close by to significantly affect each other's processes. Conclusions show that emerging quantum wave-shaping techniques unlock the door to greater versatility in light-matter interactions and other quantum processes in general.
本文提出了一个通用框架,用于描述可以涉及不同基本粒子或准粒子的过程之间的量子干涉。该框架表明,在先前探索的不可区分路径之间的量子干涉之外,对输入波函数进行整形是产生和控制可区分路径之间量子干涉的一种通用且强大的工具。通过在自由电子、束缚电子和光子之间的相互作用中进行整形来实现量子干涉的两个示例如下:i)当整形电子波包与光耦合时,通过破坏性量子干涉使零损耗峰消失,而在电子的零损耗峰 otherwise 占主导地位的情况下;ii)自由电子和原子(束缚电子)自发辐射过程之间的量子干涉,即使自由电子和原子相距很远,这种干涉也可能很显著,打破了自由电子和原子必须靠近才能显著影响彼此过程的常见观念。结论表明,新兴的量子波整形技术为更广泛地应用于光物质相互作用和其他量子过程打开了大门。