National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Sonipat, Haryana, 131028, India.
Institute of Nano Science and Technology (INST), Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
Food Res Int. 2023 Feb;164:112321. doi: 10.1016/j.foodres.2022.112321. Epub 2022 Dec 9.
Fruit peels are rich source of bioactive compounds such as polyphenols, flavonoids, and antioxidants but are often discarded as waste due to limited pharmaceutical and nutraceutical applications. This study aimed to valorise pomegranate and citrus fruit peel into green synthesised silver nanoparticles (AgNPs) in order to modify cellulose-based wrapping material for prospective food packaging applications and propose an alternate and sustainable approach to replace polyethene based food packaging material. Four different concentrations of AgNO (0.5 mM, 1 mM, 2 mM, and 3 mM) were used for green synthesis of AgNPs from fruit peel bioactive, which were characterised followed by phytochemical analysis. Ultraviolet-Visible spectroscopy showed surface plasmon resonance at 420 nm, XRD analysis showed 2θ peak at 27.8°, 32.16°, 38.5°, 44.31°, 46.09°, 54.76°, 57.47°, 64.61° and 77.50° corresponding to (210), (122), (111), (200), (231), (142), (241), (220) and (311) plane of face centred cubic crystal structure of AgNPs. Fourier-transform infrared spectroscopy analysis of AgNPs green synthesised from pomegranate and kinnow peel extract showed a major peak at 3277, 1640 and 1250-1020 1/cm while a small peak at 2786 1/cm was observed in case of pomegranate peel extract which was negligible in AgNPs synthesized from kinnow peel extract. Particle sizes of AgNPs showed no statistically significant variance with p > 0.10 and thus, 2 mM was chosen for further experimentation and modification of cellulose based packaging material as it showed smallest average particle size. Zeta potential was observed to be nearly neutral with a partial negative strength due to presence of various phenolic compounds such as presence of gallic acid which was confirmed by ultrahigh performance liquid chromatography-photodiode array(UHPLC-PDA) detector. Thermal stability analysis of green synthesised AgNPs qualified the sterilisation conditions up to 100 °C. AgNPs green synthesized from both the peel extracts had higher polyphenolic content, antioxidant and radical scavenging activity as compared to peel extracts without treatment (p < 0.05). The cellulose based food grade packaging material was enrobed by green synthesised AgNPs. The characterisation of modified cellulose wrappers showed no significant difference in thickness of modified cellulose wrappers as compared with untreated cellulose wrapper (p > 0.42) while weight and grammage increased significantly in modified cellulose wrapper (p < 0.05). The colour values on CIE scale (L*, a* and b*) showed statistically significant increase in yellow and green colour (p < 0.05) for modified cellulose wrappers as compared to control wrapper. The oxygen permeability coefficient, water vapour permeability coefficient, water absorption capacity and water behaviour characteristics (water content, swelling degree and solubility) showed significant decrease (p < 0.05) for modified cellulose wrapper as compared to control wrapper. A uniform distribution and density of green synthesised AgNPs across cellulose wrapper matrix was observed through scanning electron microscopy (SEM) images with no significant aggregation, confirming successful enrobing and stable immobilisation of nanoparticles from cellulose matrix. A seven-day storage study of bread wrapped in modified and control cellulose wrappers showed delayed occurrence of microbial, yeast and mould count in bread packaged in modified cellulose wrappers and thus, resulting in shelf life extension of bread. The results are encouraging for the potential applications of modified cellulose wrappers to replace polyethene based food packaging.
果皮是生物活性化合物的丰富来源,如多酚、类黄酮和抗氧化剂,但由于制药和营养保健品应用有限,通常被丢弃为废物。本研究旨在将石榴和柑橘果皮转化为绿色合成的银纳米粒子(AgNPs),以便对纤维素包装材料进行改性,用于有前景的食品包装应用,并提出一种替代和可持续的方法来替代基于聚乙烯的食品包装材料。使用四种不同浓度的 AgNO(0.5 mM、1 mM、2 mM 和 3 mM)从果皮生物活性物质中绿色合成 AgNPs,然后对其进行表征并进行植物化学分析。紫外可见光谱显示在 420 nm 处有表面等离子体共振,XRD 分析显示 2θ 峰在 27.8°、32.16°、38.5°、44.31°、46.09°、54.76°、57.47°、64.61°和 77.50°处,对应于(210)、(122)、(111)、(200)、(231)、(142)、(241)、(220)和(311)面心立方晶体结构的 AgNPs 平面。用石榴和金桔果皮提取物绿色合成的 AgNPs 的傅里叶变换红外光谱分析显示,主要峰在 3277、1640 和 1250-1020 1/cm 处,而在石榴果皮提取物中观察到一个小峰在 2786 1/cm 处,在金桔果皮提取物中 AgNPs 合成中可以忽略不计。AgNPs 的粒径没有表现出统计学上的显著差异(p>0.10),因此选择 2 mM 进行进一步的实验和纤维素基包装材料的改性,因为它显示出最小的平均粒径。由于存在各种酚类化合物,如存在没食子酸,导致zeta 电位几乎呈中性,带部分负电荷,这一点通过超高效液相色谱-光电二极管阵列(UHPLC-PDA)检测器得到了证实。绿色合成的 AgNPs 的热稳定性分析证明了在 100°C 下的消毒条件。与未经处理的果皮提取物相比,从两种果皮提取物中绿色合成的 AgNPs 具有更高的多酚含量、抗氧化和自由基清除活性(p<0.05)。用绿色合成的 AgNPs 包裹纤维素基食品级包装材料。改性纤维素包装的特性表明,与未处理的纤维素包装相比,改性纤维素包装的厚度没有显著差异(p>0.42),而重量和克重显著增加(p<0.05)。在 CIE 标度上的颜色值(L*、a和 b)显示出改性纤维素包装与对照包装相比,黄色和绿色颜色的统计学显著增加(p<0.05)。与对照包装相比,改性纤维素包装的氧气透过系数、水蒸气透过系数、吸水率和水分行为特性(含水量、溶胀度和溶解度)显著降低(p<0.05)。通过扫描电子显微镜(SEM)图像观察到绿色合成的 AgNPs 在纤维素包装基质中均匀分布和密度,没有明显的聚集,证实了纳米粒子从纤维素基质中的成功包埋和稳定固定。对用改性和对照纤维素包装的面包进行的为期七天的储存研究表明,在改性纤维素包装的面包中,微生物、酵母和霉菌的计数延迟发生,从而延长了面包的保质期。这些结果令人鼓舞,为替代基于聚乙烯的食品包装材料的改性纤维素包装的潜在应用提供了依据。