Suppr超能文献

用于多视图聚类的增强张量低秩表示学习

Enhanced tensor low-rank representation learning for multi-view clustering.

作者信息

Xie Deyan, Gao Quanxue, Yang Ming

机构信息

School of Science and Information Science, Qingdao Agricultural University, Qingdao, China.

School of Telecommunications Engineering, Xidian University, Xi'an, China.

出版信息

Neural Netw. 2023 Apr;161:93-104. doi: 10.1016/j.neunet.2023.01.037. Epub 2023 Jan 28.

Abstract

Multi-view subspace clustering (MSC), assuming the multi-view data are generated from a latent subspace, has attracted considerable attention in multi-view clustering. To recover the underlying subspace structure, a successful approach adopted recently is subspace clustering based on tensor nuclear norm (TNN). But there are some limitations to this approach that the existing TNN-based methods usually fail to exploit the intrinsic cluster structure and high-order correlations well, which leads to limited clustering performance. To address this problem, the main purpose of this paper is to propose a novel tensor low-rank representation (TLRR) learning method to perform multi-view clustering. First, we construct a 3rd-order tensor by organizing the features from all views, and then use the t-product in the tensor space to obtain the self-representation tensor of the tensorial data. Second, we use the ℓ norm to constrain the self-representation tensor to make it capture the class-specificity distribution, that is important for depicting the intrinsic cluster structure. And simultaneously, we rotate the self-representation tensor, and use the tensor singular value decomposition-based weighted TNN as a tighter tensor rank approximation to constrain the rotated tensor. For the challenged mathematical optimization problem, we present an effective optimization algorithm with a theoretical convergence guarantee and relatively low computation complexity. The constructed convergent sequence to the Karush-Kuhn-Tucker (KKT) critical point solution is mathematically validated in detail. We perform extensive experiments on four datasets and demonstrate that TLRR outperforms state-of-the-art multi-view subspace clustering methods.

摘要

多视图子空间聚类(MSC)假设多视图数据是从潜在子空间生成的,在多视图聚类中受到了广泛关注。为了恢复潜在的子空间结构,最近采用的一种成功方法是基于张量核范数(TNN)的子空间聚类。但这种方法存在一些局限性,现有的基于TNN的方法通常无法很好地利用内在的聚类结构和高阶相关性,这导致聚类性能有限。为了解决这个问题,本文的主要目的是提出一种新颖的张量低秩表示(TLRR)学习方法来进行多视图聚类。首先,我们通过组织来自所有视图的特征构建一个三阶张量,然后在张量空间中使用t-积来获得张量数据的自表示张量。其次,我们使用ℓ范数来约束自表示张量,使其捕捉类特异性分布,这对于描述内在的聚类结构很重要。同时,我们旋转自表示张量,并使用基于张量奇异值分解的加权TNN作为更紧的张量秩近似来约束旋转后的张量。对于具有挑战性的数学优化问题,我们提出了一种有效的优化算法,具有理论收敛保证且计算复杂度相对较低。详细地在数学上验证了构造的到Karush-Kuhn-Tucker(KKT)临界点解的收敛序列。我们在四个数据集上进行了广泛的实验,并证明TLRR优于现有的多视图子空间聚类方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验