Suppr超能文献

硫歧化反应实现了一种无有机物质的产硫化物过程,用于可持续处理酸性矿山排水。

Sulfur disproportionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage.

作者信息

Zou Jiahui, Qiu Yan-Ying, Li Hao, Jiang Feng

机构信息

School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China.

School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou, China.

出版信息

Water Res. 2023 Apr 1;232:119647. doi: 10.1016/j.watres.2023.119647. Epub 2023 Jan 20.

Abstract

Biological sulfidogenic processes (BSPs) have been considered effective biotechnologies for the treatment of organic-deficit acid mine drainage (AMD) and heavy metal recovery. However, high-rate sulfide production relies on the continuous addition of exogenous organic substrates as electron donors to facilitate dissimilatory sulfate reduction, which substantially increases the operational cost and CO emission and also limits the wide application of BSPs in AMD treatment. In this study, we proposed a novel chemoautotrophic elemental sulfur disproportionation (SD) process as an alternative to conventional BSPs for treating AMD, in which sulfur-disproportionating bacteria (SDB) disproportionates sulfur to sulfide and sulfate without organic substrate supplementation. During the 393-day lab-scale test, we observed that the sulfur-disproportionating reactor (SDR) achieved a stable high-rate sulfide production, with a maximal rate of 21.10 mg S/L-h at an organic-substrate-free condition. This high rate of sulfide production suggested that the SD process could provide sufficient sulfide to precipitate metal ions from AMD. Thermodynamics analysis and batch tests further revealed that alkalinity rather than sulfate was the critical factor influencing the SD process, suggesting that the abundant sulfate present in AMD would not inhibit the SD process. The critical condition of SD in the SDR was therefore determined. Microbial community analysis showed that Dissulfurimicrobium sp. was the dominant SDB during the long-term operation regardless of dynamic sulfate and/or alkalinity concentrations, which provides evidence that SDB can be employed for sustainable and high-rate sulfide production for engineering purposes. A multi-stage AMD treatment system equipped with a SDR removed over 99% of the influent metals (i.e., Fe, Al, Zn, Cu, Pb) from AMD except for Mn. This study demonstrated that the novel SD process is a green and promising biotechnology for the sustainable treatment of organic-deficient metal-laden wastewater, such as AMD.

摘要

生物硫化过程(BSPs)被认为是处理有机缺乏型酸性矿山排水(AMD)和回收重金属的有效生物技术。然而,高硫化物产量依赖于持续添加外源有机底物作为电子供体,以促进异化硫酸盐还原,这大大增加了运营成本和碳排放,也限制了BSPs在AMD处理中的广泛应用。在本研究中,我们提出了一种新型化学自养元素硫歧化(SD)过程,作为传统BSPs处理AMD的替代方法,其中硫歧化细菌(SDB)在不添加有机底物的情况下将硫歧化为硫化物和硫酸盐。在为期393天的实验室规模试验中,我们观察到硫歧化反应器(SDR)实现了稳定的高硫化物产量,在无有机底物条件下的最大产量为21.10 mg S/L-h。这种高硫化物产量表明SD过程可以提供足够的硫化物来沉淀AMD中的金属离子。热力学分析和批次试验进一步表明,碱度而非硫酸盐是影响SD过程的关键因素,这表明AMD中大量存在的硫酸盐不会抑制SD过程。因此确定了SDR中SD的关键条件。微生物群落分析表明,无论动态硫酸盐和/或碱度浓度如何,Dissulfurimicrobium sp.在长期运行过程中都是主要的SDB,这为SDB可用于工程目的的可持续和高产量硫化物生产提供了证据。配备SDR的多级AMD处理系统去除了AMD中超过99%的进水金属(即铁、铝、锌、铜、铅),除了锰。本研究表明,新型SD过程是一种绿色且有前景的生物技术,可用于可持续处理有机缺乏的含金属废水,如AMD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验