College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China.
Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan, China.
Biodegradation. 2024 Oct 23;36(1):1. doi: 10.1007/s10532-024-10099-w.
Elemental sulfur (S) autotrophic reduction is a promising approach for antimonate [Sb(V)] removal from water; however, it is hard to achieve effective removal of total antimony (TSb). This study established internal recirculation in an S autotrophic bioreactor (SABIR) to enhance TSb removal from Sb(V)-contaminated water. Complete Sb(V) reduction (10 mg/L) with bare residual Sb(III) (< 0.26 mg/L) was achieved at hydraulic retention time (HRT) = 8 h. Shortening HRT adversely affected the removal efficiencies of Sb(V) and TSb; meanwhile, an increased reflux ratio was conducive to Sb(V) and TSb removal at the same HRT. Sulfur disproportionation occurred in the SABIR and was the primary source for SO generation and alkalinity consumption. The alkalinity consumption decreased with the shortening HRT and increased with an increased reflux ratio at the same HRT. The generated SO was significantly higher (50-100 times) than the theoretical value for Sb(V) reduction. Coefficient of variation (CV), first-order kinetic models, and osmolality analyses showed that internal recirculation did not significantly affect the stability of SABIR but contributed to enhancing TSb removal by increasing mass transfer and reflowing generated sulfide back to the SABIR. SEM-EDS, Raman spectroscopy, XRD and XPS analyses identified that the precipitates in the SABIR were SbS and Sb-S compounds. In addition, high-throughput sequencing analysis revealed the microbial community structure's temporal and spatial distribution in the SABIR. Dominant genera, including unclassified-Proteobacteria (18.72-38.99%), Thiomonas (0.94-4.87%) and Desulfitobacterium (1.18-2.75%) might be responsible for Sb(V) bio-reduction and removal. This study provides a strategy to remove Sb from water effectively and supports the theoretical basis for the practical application of the SABIR in Sb(V)-contaminated wastewater.
元素硫(S)自养还原是一种从水中去除 [Sb(V)] 的很有前途的方法;然而,很难有效去除总锑(TSb)。本研究在硫自养生物反应器(SABIR)中建立内部再循环,以增强从 Sb(V)污染水中去除 TSb。在水力停留时间(HRT)= 8 h 时,可实现 Sb(V)的完全还原(10 mg/L),残余 Sb(III)(<0.26 mg/L)。缩短 HRT 会对 Sb(V)和 TSb 的去除效率产生不利影响;同时,在相同的 HRT 下,增加回流比有利于 Sb(V)和 TSb 的去除。SABIR 中发生了硫歧化反应,是生成 SO 和消耗碱度的主要来源。碱度消耗随 HRT 的缩短而降低,在相同的 HRT 下随回流比的增加而增加。生成的 SO 显著高于(50-100 倍)Sb(V)还原的理论值。变异系数(CV)、一级动力学模型和渗透压分析表明,内部再循环并没有显著影响 SABIR 的稳定性,但通过增加传质和将生成的硫化物回流到 SABIR 来增强 TSb 的去除。SEM-EDS、拉曼光谱、XRD 和 XPS 分析表明,SABIR 中的沉淀物为 SbS 和 Sb-S 化合物。此外,高通量测序分析揭示了 SABIR 中微生物群落结构的时空分布。优势属包括未分类的变形杆菌(18.72-38.99%)、硫单胞菌(0.94-4.87%)和脱硫杆菌(1.18-2.75%),可能负责 Sb(V)的生物还原和去除。本研究为从水中有效去除 Sb 提供了一种策略,并为 SABIR 在 Sb(V)污染废水中的实际应用提供了理论基础。