Suppr超能文献

DLVO 表面力在液体薄膜中的作用和胶体振动结构力在分散体稳定性中的统计力学。

DLVO surface forces in liquid films and statistical mechanics of colloidal oscillatory structural forces in dispersion stability.

机构信息

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, United States.

出版信息

Adv Colloid Interface Sci. 2023 Mar;313:102847. doi: 10.1016/j.cis.2023.102847. Epub 2023 Jan 29.

Abstract

This paper focuses on the theory of the dispersion stability considering two models. In the classical DLVO model of surface forces, the interactions between two particles consist of two terms: the London-van der Waals attractive interaction and the electrostatic repulsive interaction in the frame of the Debye-Hückel theory. The solvent, the aqueous solution of the electrolyte, was considered the continuous phase. The film stability criteria are P > Π and dP/dh > 0. Henderson and Lozada-Cassou (HC) applied the statistical mechanics approach to calculate the film free energy to predict the dispersion stability by considering two large hard spheres as colloidal particles immersed in a fluid of dispersed small particles (the solvent). HC applied the radial distribution function g(r) to calculate the free oscillatory structural energy using W(r) = - kT ln g(r). HC's theoretical approach was also applied to the particle collective interactions in the film and explains the stability of film formed from complex fluids (e.g., micellar and colloidal dispersions). The differences between the solvation oscillatory layering forces and colloidal oscillatory structural forces are discussed. The application of the DLVO model to the dispersion stability is critically reviewed. The role of nanobubbles in the dispersion stability is discussed.

摘要

本文主要关注考虑两种模型的分散稳定性理论。在经典的表面力 DLVO 模型中,两个粒子之间的相互作用包括两个项:伦敦-范德华吸引力和德拜-休克尔理论框架中的静电排斥力。溶剂,即电解质的水溶液,被视为连续相。薄膜稳定性判据为 P > Π 和 dP/dh > 0。Henderson 和 Lozada-Cassou (HC) 应用统计力学方法计算薄膜自由能,通过考虑两个大硬球作为胶体颗粒浸入分散小颗粒(溶剂)的流体中来预测分散稳定性。HC 应用径向分布函数 g(r) 计算自由振荡结构能,使用 W(r) = - kT ln g(r)。HC 的理论方法也应用于薄膜中颗粒的集体相互作用,并解释了由复杂流体(例如胶束和胶体分散体)形成的薄膜的稳定性。讨论了溶剂化振荡分层力和胶体振荡结构力之间的差异。对 DLVO 模型在分散稳定性中的应用进行了批判性审查。讨论了纳米气泡在分散稳定性中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验