Suppr超能文献

给编辑的信:尿液 DNA 对尿路上皮癌无创检测和微小残留病灶监测的临床实用性。

Letter to the Editor: clinical utility of urine DNA for noninvasive detection and minimal residual disease monitoring in urothelial carcinoma.

机构信息

Department of Urology, Peking University First Hospital, No. 8 Xishiku Dajie, Xicheng District, Beijing, 100034, People's Republic of China.

Department of Urology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.

出版信息

Mol Cancer. 2023 Feb 4;22(1):25. doi: 10.1186/s12943-023-01729-7.

Abstract

Current methods for the early detection and minimal residual disease (MRD) monitoring of urothelial carcinoma (UC) are invasive and/or possess suboptimal sensitivity. We developed an efficient workflow named urine tumor DNA multidimensional bioinformatic predictor (utLIFE). Using UC-specific mutations and large copy number variations, the utLIFE-UC model was developed on a bladder cancer cohort (n = 150) and validated in The Cancer Genome Atlas (TCGA) bladder cancer cohort (n = 674) and an upper tract urothelial carcinoma (UTUC) cohort (n = 22). The utLIFE-UC model could discriminate 92.8% of UCs with 96.0% specificity and was robustly validated in the BLCA_TCGA and UTUC cohorts. Furthermore, compared to cytology, utLIFE-UC improved the sensitivity of bladder cancer detection (p < 0.01). In the MRD cohort, utLIFE-UC could distinguish 100% of patients with residual disease, showing superior sensitivity compared to cytology (p < 0.01) and fluorescence in situ hybridization (FISH, p < 0.05). This study shows that utLIFE-UC can be used to detect UC with high sensitivity and specificity in patients with early-stage cancer or MRD. The utLIFE-UC is a cost-effective, rapid, high-throughput, noninvasive, and promising approach that may reduce the burden of cystoscopy and blind surgery.

摘要

目前用于检测尿路上皮癌(UC)早期和微小残留病(MRD)的方法具有侵袭性和/或敏感性不佳。我们开发了一种名为尿液肿瘤 DNA 多维生物信息预测器(utLIFE)的高效工作流程。利用 UC 特异性突变和大片段拷贝数变异,在膀胱癌队列(n=150)上开发 utLIFE-UC 模型,并在癌症基因组图谱(TCGA)膀胱癌队列(n=674)和上尿路上皮癌(UTUC)队列(n=22)中进行验证。utLIFE-UC 模型可以区分 92.8%的 UC,特异性为 96.0%,在 BLCA_TCGA 和 UTUC 队列中得到了稳健验证。此外,与细胞学相比,utLIFE-UC 提高了膀胱癌检测的灵敏度(p<0.01)。在 MRD 队列中,utLIFE-UC 可以区分 100%的有残留疾病的患者,与细胞学(p<0.01)和荧光原位杂交(FISH,p<0.05)相比,具有更高的灵敏度。本研究表明,utLIFE-UC 可以用于检测早期癌症或 MRD 患者的 UC,具有高灵敏度和特异性。utLIFE-UC 是一种具有成本效益、快速、高通量、非侵入性和有前途的方法,可能会减少膀胱镜和盲目手术的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/820f/9898912/4432ce33abd3/12943_2023_1729_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验