Neubert Torsten, Gordillo-Vázquez Francisco J, Huntrieser Heidi
National Space Institute, Technical University of Denmark (DTU Space), Elektrovej bld. 328, 2800, Kongens Lyngby, Denmark.
Instituto de Astrofísica de Andalucía (IAA - CSIC), Glorieta de la Astronomía s/n, 18008, Granada, Spain.
NPJ Microgravity. 2023 Feb 4;9(1):12. doi: 10.1038/s41526-023-00257-4.
The International Space Station (ISS) is in the lowest available orbit at 400 km altitude, bringing instruments as close to the atmosphere as possible from the vantage point of space. The orbit inclination is 51.6°, which brings the ISS over all the low- and mid-latitude regions of the Earth and at all local times. It is an ideal platform to observe deep convection and electrification of thunderstorms, taken advantage of by the Lightning Imaging Sensor (LIS) and the Atmosphere Space Interaction Monitor (ASIM) experiments. In the coming years, meteorological satellites in geostationary orbit (36,000 km altitude) will provide sophisticated cloud and lightning observations with almost complete coverage of the Earth's thunderstorm regions. In addition, Earth-observing satellite instruments in geostationary- and low-Earth orbit (LEO) will measure more atmospheric parameters at a higher resolution than we know today. The new infrastructure in space offers an opportunity to advance our understanding of the role of thunderstorms in atmospheric dynamics and climate change. Here, we discuss how observations from the ISS or other LEO platforms with instruments that view the atmosphere at slanted angles can complement the measurements from primarily nadir-oriented instruments of present and planned missions. We suggest that the slanted viewing geometry from LEO may resolve the altitude of electrical activity and the cloud structure where they occur, with implications for modelling thunderstorms' effects on the atmosphere's radiative properties and climate balance.
国际空间站(ISS)处于约400公里高度的最低可用轨道,从太空有利位置将仪器尽可能靠近大气层。轨道倾角为51.6°,这使得国际空间站能覆盖地球所有低纬度和中纬度地区以及所有当地时间。它是观测雷暴深对流和起电现象的理想平台,闪电成像传感器(LIS)和大气-空间相互作用监测仪(ASIM)实验都利用了这一点。在未来几年,地球静止轨道(约36000公里高度)上的气象卫星将提供复杂的云和闪电观测,几乎能完全覆盖地球的雷暴区域。此外,地球静止轨道和低地球轨道(LEO)上的地球观测卫星仪器将以比我们目前所知更高的分辨率测量更多大气参数。太空中的新基础设施为推进我们对雷暴在大气动力学和气候变化中作用的理解提供了机会。在此,我们讨论国际空间站或其他具有倾斜视角观测大气仪器的低地球轨道平台的观测如何补充当前和计划任务中主要面向天底的仪器的测量。我们认为,低地球轨道的倾斜观测几何可能会解析电活动发生的高度及其所在的云结构,这对模拟雷暴对大气辐射特性和气候平衡的影响具有重要意义。