Suppr超能文献

基于生物信息学分析鉴定类风湿关节炎的必需基因和免疫细胞浸润

Identification of essential genes and immune cell infiltration in rheumatoid arthritis by bioinformatics analysis.

机构信息

Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, People's Republic of China.

出版信息

Sci Rep. 2023 Feb 4;13(1):2032. doi: 10.1038/s41598-023-29153-3.

Abstract

Rheumatoid arthritis (RA) is a common autoimmune disease that can lead to severe joint damage and disability. And early diagnosis and treatment of RA can avert or substantially slow the progression of joint damage in up to 90% of patients, thereby preventing irreversible disability. Previous research indicated that 50% of the risk for the development of RA is attributable to genetic factors, but the pathogenesis is not well understood. Thus, it is urgent to identify biomarkers to arrest RA before joints are irreversibly damaged. Here, we first use the Robust Rank Aggregation method (RRA) to identify the differentially expressed genes (DEGs) between RA and normal samples by integrating four public RA patients' mRNA expression data. Subsequently, these DEGs were used as the input for the weighted gene co-expression network analysis (WGCNA) approach to identify RA-related modules. The function enrichment analysis suggested that the RA-related modules were significantly enriched in immune-related actions. Then the hub genes were defined as the candidate genes. Our analysis showed that the expression levels of candidate genes were significantly associated with the RA immune microenvironment. And the results indicated that the expression of the candidate genes can use as predictors for RA. We hope that our method can provide a more convenient approach for the early diagnosis of RA.

摘要

类风湿关节炎(RA)是一种常见的自身免疫性疾病,可导致严重的关节损伤和残疾。早期诊断和治疗 RA 可以避免或大大减缓高达 90%患者的关节损伤进展,从而防止不可逆转的残疾。先前的研究表明,RA 发展的 50%风险归因于遗传因素,但发病机制尚不清楚。因此,迫切需要在关节受到不可逆转的损伤之前识别出生物标志物来阻止 RA 的发生。在这里,我们首先使用稳健排名聚合方法(RRA),通过整合四个公共 RA 患者的 mRNA 表达数据,来识别 RA 和正常样本之间的差异表达基因(DEGs)。随后,这些 DEGs 被用作加权基因共表达网络分析(WGCNA)方法的输入,以识别与 RA 相关的模块。功能富集分析表明,RA 相关模块在免疫相关作用中显著富集。然后将枢纽基因定义为候选基因。我们的分析表明,候选基因的表达水平与 RA 免疫微环境显著相关。并且结果表明候选基因的表达可以用作 RA 的预测因子。我们希望我们的方法可以为 RA 的早期诊断提供更便捷的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2db1/9899220/799278aabde6/41598_2023_29153_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验