Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.
Keio J Med. 2023 Jun 25;72(2):44-59. doi: 10.2302/kjm.2022-0020-OA. Epub 2023 Feb 25.
The standard method for sleep state classification is thresholding the amplitudes of electroencephalography (EEG) and electromyography (EMG) data, followed by manual correction by an expert. Although popular, this method has some shortcomings: (1) the time-consuming manual correction by human experts is sometimes a bottleneck hindering sleep studies, (2) EEG electrodes on the skull interfere with wide-field imaging of the cortical activity of a head-fixed mouse under a microscope, (3) invasive surgery to fix the electrodes on the thin mouse skull risks brain tissue injury, and (4) metal electrodes for EEG and EMG recording are difficult to apply to some experimental apparatus such as that for functional magnetic resonance imaging. To overcome these shortcomings, we propose a pupil dynamics-based vigilance state classification method for a head-fixed mouse using a long short-term memory (LSTM) model, a variant of a recurrent neural network, for multi-class labeling of NREM, REM, and WAKE states. For supervisory hypnography, EEG and EMG recording were performed on head-fixed mice. This setup was combined with left eye pupillometry using a USB camera and a markerless tracking toolbox, DeepLabCut. Our open-source LSTM model with feature inputs of pupil diameter, pupil location, pupil velocity, and eyelid opening for 10 s at a 10 Hz sampling rate achieved vigilance state estimation with a higher classification performance (macro F1 score, 0.77; accuracy, 86%) than a feed-forward neural network. Findings from a diverse range of pupillary dynamics implied possible subdivision of the vigilance states defined by EEG and EMG. Pupil dynamics-based hypnography can expand the scope of alternatives for sleep stage scoring of head-fixed mice.
睡眠状态分类的标准方法是对脑电图 (EEG) 和肌电图 (EMG) 数据进行阈值处理,然后由专家进行手动校正。尽管这种方法很流行,但它存在一些缺点:(1) 人类专家耗时的手动校正有时会成为睡眠研究的瓶颈,(2) 头骨上的 EEG 电极会干扰显微镜下头部固定的老鼠皮层活动的宽场成像,(3) 将电极固定在薄老鼠头骨上的侵入性手术有损伤脑组织的风险,(4) EEG 和 EMG 记录的金属电极难以应用于某些实验设备,如功能磁共振成像仪。为了克服这些缺点,我们提出了一种基于瞳孔动力学的警觉状态分类方法,用于头部固定的老鼠,使用长短期记忆 (LSTM) 模型,即递归神经网络的变体,对非快速眼动 (NREM)、快速眼动 (REM) 和清醒 (WAKE) 状态进行多类标记。为了进行监督性催眠,我们在头部固定的老鼠身上进行了 EEG 和 EMG 记录。该设置与左眼瞳孔测量相结合,使用 USB 摄像机和无标记跟踪工具箱 DeepLabCut。我们的开源 LSTM 模型以瞳孔直径、瞳孔位置、瞳孔速度和眨眼的特征输入,以 10 Hz 的采样率进行 10 s 的输入,其警觉状态估计的分类性能更高(宏 F1 分数为 0.77;准确性为 86%)比前馈神经网络。多种瞳孔动力学的发现暗示了 EEG 和 EMG 定义的警觉状态可能存在细分。基于瞳孔动力学的催眠术可以扩展头部固定老鼠睡眠阶段评分的替代方案范围。