Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
J Neurosci Methods. 2024 Nov;411:110250. doi: 10.1016/j.jneumeth.2024.110250. Epub 2024 Aug 14.
Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.
A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.
Sleep states were classified with an accuracy of 84 % and Cohen's κ of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.
On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a κ of 0.67, comparable to a κ of 0.65 corresponding to the human EEG/EMG-based scoring.
The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.
使用基因编码钙指示剂的宽场钙成像(WFCI)允许在小鼠中进行神经元活动的时空记录。当应用于睡眠研究时,WFCI 数据通过使用附加的 EEG 和 EMG 记录手动评分成清醒、非快速眼动(NREM)和快速眼动(REM)睡眠状态。然而,这个过程耗时、侵入性强,并且常常受到低的内部和外部评分者可靠性的影响。因此,需要一种在时空 WFCI 数据上运行的自动睡眠状态分类方法。
提出了一种混合网络架构,由卷积神经网络(CNN)提取图像帧的空间特征和具有注意力机制的双向长短期记忆网络(BiLSTM)组成,以将 WFCI 数据分类为清醒、NREM 和 REM 睡眠状态。
睡眠状态的分类准确率为 84%,Cohen's κ 为 0.64。梯度加权类激活图显示,在将 WFCI 数据分类为 NREM 睡眠时,皮质的额区更为重要,而后部区域对清醒的识别贡献最大。注意力得分表明,所提出的网络以特定于状态的方式关注短期和长期的时间依赖性。
在一个保持的、重复的 3 小时 WFCI 记录上,CNN-BiLSTM 达到了 κ=0.67,与基于人类 EEG/EMG 的评分的 κ=0.65 相当。
CNN-BiLSTM 有效地从时空 WFCI 数据中分类睡眠状态,并将使 WFCI 在睡眠研究中的更广泛应用成为可能。