Suppr超能文献

基于注意力机制的卷积神经网络-双向长短时记忆网络在时空宽场钙成像数据睡眠状态分类中的应用。

Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data.

机构信息

Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

J Neurosci Methods. 2024 Nov;411:110250. doi: 10.1016/j.jneumeth.2024.110250. Epub 2024 Aug 14.

Abstract

BACKGROUND

Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.

NEW METHOD

A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.

RESULTS

Sleep states were classified with an accuracy of 84 % and Cohen's κ of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.

COMPARISON WITH EXISTING METHOD

On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a κ of 0.67, comparable to a κ of 0.65 corresponding to the human EEG/EMG-based scoring.

CONCLUSIONS

The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.

摘要

背景

使用基因编码钙指示剂的宽场钙成像(WFCI)允许在小鼠中进行神经元活动的时空记录。当应用于睡眠研究时,WFCI 数据通过使用附加的 EEG 和 EMG 记录手动评分成清醒、非快速眼动(NREM)和快速眼动(REM)睡眠状态。然而,这个过程耗时、侵入性强,并且常常受到低的内部和外部评分者可靠性的影响。因此,需要一种在时空 WFCI 数据上运行的自动睡眠状态分类方法。

新方法

提出了一种混合网络架构,由卷积神经网络(CNN)提取图像帧的空间特征和具有注意力机制的双向长短期记忆网络(BiLSTM)组成,以将 WFCI 数据分类为清醒、NREM 和 REM 睡眠状态。

结果

睡眠状态的分类准确率为 84%,Cohen's κ 为 0.64。梯度加权类激活图显示,在将 WFCI 数据分类为 NREM 睡眠时,皮质的额区更为重要,而后部区域对清醒的识别贡献最大。注意力得分表明,所提出的网络以特定于状态的方式关注短期和长期的时间依赖性。

与现有方法的比较

在一个保持的、重复的 3 小时 WFCI 记录上,CNN-BiLSTM 达到了 κ=0.67,与基于人类 EEG/EMG 的评分的 κ=0.65 相当。

结论

CNN-BiLSTM 有效地从时空 WFCI 数据中分类睡眠状态,并将使 WFCI 在睡眠研究中的更广泛应用成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验