School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal.
Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Respir Res. 2023 Feb 5;24(1):42. doi: 10.1186/s12931-023-02328-2.
Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms.
Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl) concentrations (5.8, 29, 143, and 715 mM) or Cl channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers.
For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl], 715 mM Cl, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner.
Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
临床和实验证据表明,肺液体积是调节胎儿肺生长的调节剂,在治疗胎儿肺发育不全方面具有重要价值。因此,理解这些形态动力学背后的机制一直是多个研究的主题,但结果有限,部分原因是难以在实验室中捕捉或再现这些运动。在这方面,本研究旨在建立一种允许研究分支形态发生中肺液功能的离体模型,并确定随后的分子/细胞机制。
选择离体肺培养作为研究分支形态发生的模型,并进行管腔内注射以改变肺液的组成。在两个时间点(D0 和 D2),向肺腔中注入不同的氯(Cl)浓度(5.8、29、143 和 715 mM)或 Cl 通道抑制剂[蒽-9-羧酸(A9C)、囊性纤维化跨膜电导调节剂抑制剂 172(CFTRinh)和钙依赖性 Cl 通道抑制剂 A01(CaCCinh)]。在 D4 时,通过分支形态发生、机械感受器(PIEZO1 和 PIEZO2)、神经内分泌(蛙皮素、胃饥饿素和 PGP9.5)和平滑肌[α-平滑肌肌动蛋白(α-SMA)和肌球蛋白轻链 2(MLC2)]标志物的免疫荧光和蛋白质定量(western blot)进行形态学和分子分析。
我们首次描述了在 D0 和 D2 进行有效的管腔内注射,并在离体肺培养中显示了 D4 时的管腔内运动。通过体内和体外分支形态发生的免疫荧光分析,我们表明 PGP9.5 与 PIEZO1 和 PIEZO2 受体共定位。通过过表达 PIEZO1、PIEZO2、胃饥饿素、蛙皮素、MLC2 和 α-SMA,在较高的 Cl 浓度(715 mM Cl)下,胎儿肺生长增加。相比之下,管腔内注射 CFTRinh 或 CaCCinh 会降低胎儿肺生长和 PIEZO1、PIEZO2、胃饥饿素、蛙皮素、MLC2 和 α-SMA 的表达。最后,GsMTx4 抑制 PIEZO1/PIEZO2 以管腔内注射非依赖性方式减少分支形态发生和胃饥饿素、蛙皮素、MLC2 和 α-SMA 的表达。
我们的结果表明,在神经内分泌细胞中表达的 PIEZO1/PIEZO2 是肺液诱导胎儿肺生长的调节剂。