Suppr超能文献

空气和液下环境中超润湿楔形表面上液滴的定向自输运。

Directional Self-Transportation of Droplets on Superwetting Wedge-Shaped Surface in Air and Underliquid Environments.

机构信息

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China.

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8742-8750. doi: 10.1021/acsami.2c21392. Epub 2023 Feb 5.

Abstract

The directional self-transportation of droplets has aroused great attention in microfluidic systems. However, most reported surfaces are mainly designed for driving water droplets to move in air, displaying low adaptability in complex environments. This work presents a wedge-shaped surface with multiple superwettability, i.e., superhydrophilicity/superoleophilicity and underwater superoleophobicity/underoil superhydrophobicity, fabricated by electrodeposition of a metal-organic framework on a copper sheet. This surface exhibited excellent performance for driving droplet self-transportation, regardless of the droplet type (water or oil) and environmental media (air or underliquids). In air, the wedge-shaped surface with wedge angle of 9.2° could move droplets of water and dodecane up to 24.5 mm and 17.9 mm, respectively. The movement of water droplet under dodecane, however, dropped from 24.5 mm to 22.1 mm, while the dodecane droplet underwater increased from 17.9 mm to 20.3 mm in moving displacement, indicating the underliquid environment is in favor of manipulation of oil droplets. Furthermore, the droplet convergence, transportation, and separation were achieved on the well-designed multiple wedge tracks in air with a total movement distance up to 60.0 mm. The test of micro-oil droplets collecting under water demonstrated that a sponge with two wedges has 2.1 times the oil droplet collection capacity over that of the sponge only, providing a new strategy for efficient treatment of the micro-oil droplets contaminated water.

摘要

液滴的定向自输运在微流控系统中引起了极大的关注。然而,大多数报道的表面主要是为了驱动水滴滴在空气中运动而设计的,在复杂环境中的适应性较低。本工作提出了一种具有多重超润湿性的楔形表面,即超亲水/超亲油性和水下超疏油性/超疏油性,通过在铜片上电沉积金属有机骨架来制备。该表面在驱动液滴自输运方面表现出优异的性能,无论液滴类型(水或油)和环境介质(空气或液体下)如何。在空气中,楔形角为 9.2°的楔形表面可以分别将水滴和正十二烷移动 24.5 毫米和 17.9 毫米。然而,在正十二烷下,水滴的运动距离从 24.5 毫米下降到 22.1 毫米,而水下正十二烷液滴的运动距离从 17.9 毫米增加到 20.3 毫米,这表明液体下的环境有利于油滴的操作。此外,水滴在空气中的多个楔形轨道上可以实现汇聚、输送和分离,总运动距离可达 60.0 毫米。在水下收集微油滴的测试表明,两个楔形的海绵比只有一个楔形的海绵的集油能力提高了 2.1 倍,为高效处理受微油滴污染的水提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验