Suppr超能文献

基于机器学习的零日攻击检测综述:挑战与未来方向

A Survey of Machine Learning-Based Zero-Day Attack Detection: Challenges and Future Directions.

作者信息

Guo Yang

机构信息

NIST, Gaithersburg, MD 20899.

出版信息

Comput Commun. 2023 Jan;198. doi: 10.1016/j.comcom.2022.11.001.

Abstract

Zero-day attacks exploit unknown vulnerabilities so as to avoid being detected by cybersecurity detection tools. The studies [1], [2], [3] show that zero-day attacks are wide spread and are one of the major threats to computer security. The traditional signature-based detection method is not effective in detecting zero-day attacks as the signatures of zero-day attacks are typically not available beforehand. Machine Learning (ML)-based detection method is capable of capturing attacks' statistical characteristics and is, hence, promising for zero-day attack detection. In this paper, a comprehensive survey of ML-based zero-day attack detection approaches is conducted, and their ML models, training and testing data sets used, and evaluation results are compared. While significant efforts have been put forth to develop accurate and robust zero-attack detection tools, the existing methods fall short in accuracy, recall, and uniformity against different types of zero-day attacks. Major challenges toward the ML-based methods are identified and future research directions are recommended last.

摘要

零日攻击利用未知漏洞,以避免被网络安全检测工具检测到。研究[1]、[2]、[3]表明,零日攻击广泛存在,是计算机安全的主要威胁之一。传统的基于签名的检测方法在检测零日攻击时无效,因为零日攻击的签名通常事先不可用。基于机器学习(ML)的检测方法能够捕捉攻击的统计特征,因此在零日攻击检测方面很有前景。本文对基于ML的零日攻击检测方法进行了全面综述,并比较了它们的ML模型、使用的训练和测试数据集以及评估结果。虽然已经付出了巨大努力来开发准确且强大的零攻击检测工具,但现有方法在针对不同类型零日攻击的准确性、召回率和一致性方面仍存在不足。识别了基于ML方法面临的主要挑战,并最后推荐了未来的研究方向。

相似文献

4
A robust intelligent zero-day cyber-attack detection technique.一种强大的智能零日网络攻击检测技术。
Complex Intell Systems. 2021;7(5):2211-2234. doi: 10.1007/s40747-021-00396-9. Epub 2021 May 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验