Suppr超能文献

一种强大的智能零日网络攻击检测技术。

A robust intelligent zero-day cyber-attack detection technique.

作者信息

Kumar Vikash, Sinha Ditipriya

机构信息

Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, 800005 India.

出版信息

Complex Intell Systems. 2021;7(5):2211-2234. doi: 10.1007/s40747-021-00396-9. Epub 2021 May 28.

Abstract

With the introduction of the Internet to the mainstream like e-commerce, online banking, health system and other day-to-day essentials, risk of being exposed to various are increasing exponentially. Zero-day attack(s) targeting unknown vulnerabilities of a software or system opens up further research direction in the field of cyber-attacks. Existing approaches either uses ML/DNN or anomaly-based approach to protect against these attacks. Detecting zero-day attacks through these techniques miss several parameters like frequency of particular byte streams in network traffic and their correlation. Covering attacks that produce lower traffic is difficult through neural network models because it requires higher traffic for correct prediction. This paper proposes a novel robust and intelligent cyber-attack detection model to cover the issues mentioned above using the concept of heavy-hitter and graph technique to detect zero-day attacks. The proposed work consists of two phases () Signature generation and () Evaluation phase. This model evaluates the performance using generated signatures at the training phase. The result analysis of the proposed zero-day attack detection shows higher performance for accuracy of 91.33% for the binary classification and accuracy of 90.35% for multi-class classification on real-time attack data. The performance against benchmark data set CICIDS18 shows a promising result of 91.62% for binary-class classification on this model. Thus, the proposed approach shows an encouraging result to detect zero-day attacks.

摘要

随着互联网融入电子商务、网上银行、医疗系统等主流日常必需品领域,遭受各种风险的可能性呈指数级增长。针对软件或系统未知漏洞的零日攻击为网络攻击领域开辟了进一步的研究方向。现有方法要么使用机器学习/深度神经网络(ML/DNN),要么采用基于异常的方法来防范这些攻击。通过这些技术检测零日攻击会遗漏一些参数,如网络流量中特定字节流的频率及其相关性。通过神经网络模型很难覆盖流量较低的攻击,因为正确预测需要更高的流量。本文提出了一种新颖的、强大且智能的网络攻击检测模型,利用重击中者概念和图形技术来检测零日攻击,以解决上述问题。所提出的工作包括两个阶段:(1)签名生成阶段和(2)评估阶段。该模型在训练阶段使用生成的签名来评估性能。对所提出的零日攻击检测的结果分析表明,在实时攻击数据上,二元分类的准确率为91.33%,多类分类的准确率为90.35%,性能较高。在基准数据集CICIDS18上的性能显示,该模型二元分类的准确率为91.62%,结果很有前景。因此,所提出的方法在检测零日攻击方面显示出令人鼓舞的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e0c/8160422/872ee312d938/40747_2021_396_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验