文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞和批量 RNA 测序的组合揭示了脊髓损伤中的免疫浸润景观和靶向治疗药物。

Combination of single-cell and bulk RNA seq reveals the immune infiltration landscape and targeted therapeutic drugs in spinal cord injury.

机构信息

Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.

Department of Neurourgery, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.

出版信息

Front Immunol. 2023 Jan 19;14:1068359. doi: 10.3389/fimmu.2023.1068359. eCollection 2023.


DOI:10.3389/fimmu.2023.1068359
PMID:36742334
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9894719/
Abstract

BACKGROUND: In secondary spinal cord injury (SCI), the immune microenvironment of the injured spinal cord plays an important role in spinal regeneration. Among the immune microenvironment components, macrophages/microglia play a dual role of pro-inflammation and anti-inflammation in the subacute stage of SCI. Therefore, discovering the immune hub genes and targeted therapeutic drugs of macrophages/microglia after SCI has crucial implications in neuroregeneration. This study aimed to identify immune hub genes and targeted therapeutic drugs for the subacute phase of SCI. METHODS: Bulk RNA sequencing (bulk-RNA seq) datasets (GSE5296 and GSE47681) and single-cell RNA sequencing (scRNA-seq) dataset (GSE189070) were obtained from the Gene Expression Omnibus database. In the bulk RNA-seq, the R package 'limma,' 'WGCNA,' and 'CIBERSORT' were used to jointly screen key immune genes. Subsequently, the R package 'Seurat' and the R package 'celldex' were used to divide and annotate the cell clusters, respectively. After using the Autodock software to dock immune hub genes and drugs that may be combined, the effectiveness of the drug was verified using an experiment with the T9 SCI mouse model. RESULTS: In the bulk-RNA seq, , , and were identified as immune hub genes. Ten cell clusters were identified in scRNA-seq, and were mainly located in the microglia, while was mainly located in macrophages. Molecular docking results showed that the proteins corresponding to these immune genes could accurately bind to decitabine. In decitabine-treated mice, the pro-inflammatory factor (TNF-α, IL-1β) levels were decreased while anti-inflammatory factor (IL-4, IL-10) levels were increased at 2 weeks post-SCI, and macrophages/microglia transformed from M1 to M2. At 6 weeks post-SCI, the neurological function score and electromyography of the decitabine treatment group were also improved. CONCLUSION: In the subacute phase of SCI, in macrophages/microglia may be key therapeutic targets to promote nerve regeneration. In addition, low-dose decitabine may promote spinal cord regeneration by regulating the polarization state of macrophages/microglia.

摘要

背景:在继发性脊髓损伤(SCI)中,损伤脊髓的免疫微环境在脊髓再生中起着重要作用。在 SCI 的亚急性期,免疫微环境成分中的巨噬细胞/小胶质细胞在炎症反应中发挥着双重作用。因此,发现 SCI 后巨噬细胞/小胶质细胞的免疫枢纽基因和靶向治疗药物对神经再生具有重要意义。本研究旨在鉴定 SCI 亚急性期的免疫枢纽基因和靶向治疗药物。

方法:从基因表达综合数据库中获取批量 RNA 测序(bulk-RNA seq)数据集(GSE5296 和 GSE47681)和单细胞 RNA 测序(scRNA-seq)数据集(GSE189070)。在批量 RNA-seq 中,使用 R 包“limma”、“WGCNA”和“CIBERSORT”联合筛选关键免疫基因。随后,使用 R 包“Seurat”和 R 包“celldex”分别对细胞簇进行划分和注释。使用 Autodock 软件对接免疫枢纽基因和可能结合的药物后,使用 T9 SCI 小鼠模型验证药物的有效性。

结果:在批量 RNA-seq 中, 、 、 和 被鉴定为免疫枢纽基因。在 scRNA-seq 中鉴定出 10 个细胞簇, 主要位于小胶质细胞中, 主要位于巨噬细胞中。分子对接结果表明,这些免疫基因对应的蛋白可以准确地与地西他滨结合。在地西他滨处理的小鼠中,SCI 后 2 周,促炎因子(TNF-α、IL-1β)水平降低,抗炎因子(IL-4、IL-10)水平升高,巨噬细胞/小胶质细胞从 M1 向 M2 转化。SCI 后 6 周,地西他滨治疗组的神经功能评分和肌电图也得到改善。

结论:在 SCI 的亚急性期,巨噬细胞/小胶质细胞中的 可能是促进神经再生的关键治疗靶点。此外,低剂量地西他滨可能通过调节巨噬细胞/小胶质细胞的极化状态促进脊髓再生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/2c3d688cc716/fimmu-14-1068359-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/d201b41ad03a/fimmu-14-1068359-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/cb8de46ea878/fimmu-14-1068359-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/d7be43523e79/fimmu-14-1068359-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/ebb267c0deae/fimmu-14-1068359-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/2cc3b03fc8a1/fimmu-14-1068359-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/9ed4c1c66226/fimmu-14-1068359-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/c855d24d4c49/fimmu-14-1068359-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/75ca8a84ca9c/fimmu-14-1068359-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/2c3d688cc716/fimmu-14-1068359-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/d201b41ad03a/fimmu-14-1068359-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/cb8de46ea878/fimmu-14-1068359-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/d7be43523e79/fimmu-14-1068359-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/ebb267c0deae/fimmu-14-1068359-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/2cc3b03fc8a1/fimmu-14-1068359-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/9ed4c1c66226/fimmu-14-1068359-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/c855d24d4c49/fimmu-14-1068359-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/75ca8a84ca9c/fimmu-14-1068359-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c4/9894719/2c3d688cc716/fimmu-14-1068359-g009.jpg

相似文献

[1]
Combination of single-cell and bulk RNA seq reveals the immune infiltration landscape and targeted therapeutic drugs in spinal cord injury.

Front Immunol. 2023

[2]
Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals the protective effects of lactate-mediated lactylation of microglia-related proteins on spinal cord injury.

CNS Neurosci Ther. 2024-9

[3]
Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages.

J Neurosci Res. 2019-4-22

[4]
Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model.

J Transl Med. 2023-3-27

[5]
Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy.

Acta Biomater. 2021-5

[6]
Distribution and polarization of microglia and macrophages at injured sites and the lumbar enlargement after spinal cord injury.

Neurosci Lett. 2020-10-15

[7]
[Necrostatin-1 promotes locomotor recovery after spinal cord injury through inhibiting apoptosis and M1 polarization of microglia/macrophage in mice].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2021-9

[8]
Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation.

J Cell Mol Med. 2017-11-17

[9]
The shared molecular mechanism of spinal cord injury and sarcopenia: a comprehensive genomics analysis.

Front Neurol. 2024-8-30

[10]
Integrated single-cell and bulk RNA sequencing identifies POSTN as a potential biomarker and therapeutic target for rheumatoid arthritis.

Gene. 2024-11-30

引用本文的文献

[1]
New Diagnostic and Therapeutic Targets for Spinal Cord Injury: GRN Gene.

J Cell Mol Med. 2025-8

[2]
Identification of Immune Hub Genes in Obese Postmenopausal Women Using Microarray and Single-Cell RNA Seq Data.

Genes (Basel). 2025-6-30

[3]
Decoding Alzheimer's Disease With Depression: Molecular Insights and Therapeutic Target.

J Cell Mol Med. 2025-3

[4]
A cryo-shocked M2 macrophages based treatment strategy promoting repair of spinal cord injury via immunomodulation and axonal regeneration effects.

J Nanobiotechnology. 2025-1-6

[5]
The Integrated Transcriptome Bioinformatics Analysis of Energy Metabolism-Related Profiles for Dorsal Root Ganglion of Neuropathic Pain.

Mol Neurobiol. 2025-4

[6]
Spatial multi-omics analysis of the microenvironment in traumatic spinal cord injury: a narrative review.

Front Immunol. 2024

[7]
Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals the protective effects of lactate-mediated lactylation of microglia-related proteins on spinal cord injury.

CNS Neurosci Ther. 2024-9

[8]
Single-cell sequencing of the substantia nigra reveals microglial activation in a model of MPTP.

Front Aging Neurosci. 2024-6-17

[9]
Immunoregulation of Glia after spinal cord injury: a bibliometric analysis.

Front Immunol. 2024

[10]
Characterization of the Expressions and m6A Methylation Modification Patterns of mRNAs and lncRNAs in a Spinal Cord Injury Rat Model.

Mol Neurobiol. 2025-1

本文引用的文献

[1]
Implications of microglial heterogeneity in spinal cord injury progression and therapy.

Exp Neurol. 2023-1

[2]
Experimental verification and validation of immune biomarkers based on chromatin regulators in ischemic stroke.

Front Genet. 2022-8-29

[3]
The immune microenvironment and tissue engineering strategies for spinal cord regeneration.

Front Cell Neurosci. 2022-8-4

[4]
Heterogeneity analysis of astrocytes following spinal cord injury at single-cell resolution.

FASEB J. 2022-8

[5]
Single-cell transcriptome analysis reveals the immune heterogeneity and the repopulation of microglia by Hif1α in mice after spinal cord injury.

Cell Death Dis. 2022-5-3

[6]
Inhibition of A2AR gene methylation alleviates white matter lesions in chronic cerebral hypoperfusion rats.

Eur Rev Med Pharmacol Sci. 2022-4

[7]
Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury.

Signal Transduct Target Ther. 2022-3-2

[8]
Comprehensive Analysis of the Expression and Prognosis for ITGBs: Identification of ITGB5 as a Biomarker of Poor Prognosis and Correlated with Immune Infiltrates in Gastric Cancer.

Front Cell Dev Biol. 2022-2-9

[9]
Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration.

J Neuroinflammation. 2021-12-7

[10]
Delving into the recent advancements of spinal cord injury treatment: a review of recent progress.

Neural Regen Res. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索