Suppr超能文献

植株间性状变异对冠层光吸收和光合作用的影响。

Consequences of interplant trait variation for canopy light absorption and photosynthesis.

作者信息

van der Meer Maarten, Lee Hyeran, de Visser Pieter H B, Heuvelink Ep, Marcelis Leo F M

机构信息

Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands.

Business Unit Greenhouse Horticulture, Wageningen Research, Wageningen, Netherlands.

出版信息

Front Plant Sci. 2023 Jan 20;14:1012718. doi: 10.3389/fpls.2023.1012718. eCollection 2023.

Abstract

Plant-to-plant variation (interplant variation) may play an important role in determining individual plant and whole canopy performance, where interplant variation in architecture and photosynthesis traits has direct effects on light absorption and photosynthesis. We aimed to quantify the importance of observed interplant variation on both whole-plant and canopy light absorption and photosynthesis. Plant architecture was measured in two experiments with fruiting tomato crops () grown in glasshouses in the Netherlands, in week 16 (Exp. 1) or week 19 (Exp. 2) after transplanting. Experiment 1 included four cultivars grown under three supplementary lighting treatments, and Experiment 2 included two different row orientations. Measured interplant variations of the architectural traits, namely, internode length, leaf area, petiole angle, and leaflet angle, as well as literature data on the interplant variation of the photosynthesis traits alpha, , and , were incorporated in a static functional-structural plant model (FSPM). The FSPM was used to analyze light absorption and net photosynthesis of whole plants in response to interplant variation in architectural and photosynthesis traits. Depending on the trait, introducing interplant variation in architecture and photosynthesis traits in a functional-structural plant model did not affect or negatively affected canopy light absorption and net photosynthesis compared with the reference model without interplant variation. Introducing interplant variation of architectural and photosynthesis traits in FSPM results in a more realistic simulation of variation of plants within a canopy. Furthermore, it can improve the accuracy of simulation of canopy light interception and photosynthesis although these effects at the canopy level are relatively small (4% for light absorption and<7% for net photosynthesis).

摘要

植株间变异(株间变异)可能在决定单株植物和整个冠层的性能方面发挥重要作用,其中植株间在结构和光合作用性状上的变异对光吸收和光合作用有直接影响。我们旨在量化观察到的株间变异对整株植物和冠层光吸收及光合作用的重要性。在荷兰温室中种植的结果期番茄作物的两个实验中,于移栽后第16周(实验1)或第19周(实验2)测量了植株结构。实验1包括在三种补光处理下种植的四个品种,实验2包括两种不同的行向。将测量得到的结构性状(即节间长度、叶面积、叶柄角度和小叶角度)的株间变异,以及光合作用性状α、β和γ的株间变异的文献数据,纳入一个静态功能 - 结构植物模型(FSPM)。该FSPM用于分析整株植物的光吸收和净光合作用对结构和光合作用性状株间变异的响应。根据性状不同,与无株间变异的参考模型相比,在功能 - 结构植物模型中引入结构和光合作用性状的株间变异对冠层光吸收和净光合作用没有影响或有负面影响。在FSPM中引入结构和光合作用性状的株间变异能更真实地模拟冠层内植物的变异。此外,它可以提高冠层光截获和光合作用模拟的准确性,尽管这些在冠层水平的影响相对较小(光吸收为4%,净光合作用小于7%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验