Prajapati Sunny Prakash, Bhaumik Rahul, Kumar Tarun
Centre for Product Design and Manufacturing, Indian Institute of Science, Bengaluru, 560012, India.
PES University, Bengaluru, Karnataka, 560085, India.
Procedia Comput Sci. 2023;218:2299-2308. doi: 10.1016/j.procs.2023.01.205. Epub 2023 Jan 31.
As of August 2022, the COVID-19 pandemic has accounted for over six million deaths globally. The urban population has been severely affected by this viral pandemic and the ensuing lockdowns, resulting in increased poverty and inequality, slowed economic growth, and a general decline in quality of life. This paper proposes a framework to evaluate the effects of the pandemic by combining agent-based simulations-based on Susceptible-Infectious-Recovered (SIR) model-with a hybrid neural network. A baseline agent-based model (ABM) incorporating various epidemiological parameters of a viral pandemic was developed, followed by an additional functional layer that integrates factors like agent mobility restrictions and isolation. It is inferred from the results that low population densities of agents and high restrictions on agent mobility could inhibit the rapid spread of the pandemic. This framework also envisages a hybrid neural network that combines the layers of convolutional neural network (CNN) and long-short-term memory (LSTM) architecture for predicting the spatiotemporal probability of infection spread using real-world pandemic data for future pandemics. This framework could aid designers, regulators, urban planners, and policymakers develop resilient, healthy, and sustainable urban spaces in post-COVID smart cities.
截至2022年8月,新冠疫情已导致全球超过600万人死亡。城市人口受到这场病毒大流行及随之而来的封锁措施的严重影响,导致贫困和不平等加剧、经济增长放缓以及生活质量普遍下降。本文提出了一个框架,通过将基于易感-感染-康复(SIR)模型的基于主体的模拟与混合神经网络相结合,来评估大流行的影响。开发了一个纳入病毒大流行各种流行病学参数的基线基于主体模型(ABM),随后增加了一个整合主体流动限制和隔离等因素的功能层。从结果推断,主体的低人口密度和对主体流动的高度限制可以抑制大流行的快速传播。该框架还设想了一个混合神经网络,它结合了卷积神经网络(CNN)层和长短时记忆(LSTM)架构,用于利用未来大流行的真实世界大流行数据预测感染传播的时空概率。该框架可以帮助设计师、监管者、城市规划者和政策制定者在新冠后智慧城市中开发有韧性、健康和可持续的城市空间。