Osthoff G, Louw A I, Visser L
National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria, Republic of South Africa.
Anal Biochem. 1987 Aug 1;164(2):315-9. doi: 10.1016/0003-2697(87)90499-4.
The separation of proteins by hydrophobic-interaction HPLC and reversed-phase HPLC depends upon differences in the hydrophobicity of accessible surface groups. The elution order of a group of snake venom cardiotoxins was found to vary between these two HPLC methods. Circular dichroism spectroscopy showed that the eluant acetonitrile-trifluoroacetic acid used for reversed-phase HPLC altered the conformation of the toxins, whereas the salt-buffer eluting medium used for hydrophobic-interaction HPLC did not affect toxin conformation. The retention times of cardiotoxins on reversed-phase HPLC are therefore influenced by their conformational instability in the eluting medium which causes partial or complete unfolding. Hydrophobic interaction is clearly the preferred method with which to correlate the "surface hydrophobicity" of cardiotoxins and their biological effects.