Suppr超能文献

IGPred-HDnet:基于图特征和层次深度学习的免疫球蛋白蛋白预测方法。

IGPred-HDnet: Prediction of Immunoglobulin Proteins Using Graphical Features and the Hierarchal Deep Learning-Based Approach.

机构信息

Department of Computer Science, School of Science and Technology, University of Management and Technology, Lahore, Pakistan.

Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2023 Jan 25;2023:2465414. doi: 10.1155/2023/2465414. eCollection 2023.

Abstract

. Immunoglobulin proteins (IGP) (also called antibodies) are glycoproteins that act as B-cell receptors against external or internal antigens like viruses and bacteria. IGPs play a significant role in diverse cellular processes ranging from adhesion to cell recognition. IGP identifications via the in-silico approach are faster and more cost-effective than wet-lab technological methods. . In this study, we developed an intelligent theoretical deep learning framework, "IGPred-HDnet" for the discrimination of IGPs and non-IGPs. Three types of promising descriptors are feature extraction based on graphical and statistical features (FEGS), amphiphilic pseudo-amino acid composition (Amp-PseAAC), and dipeptide composition (DPC) to extract the graphical, physicochemical, and sequential features. Next, the extracted attributes are evaluated through machine learning, i.e., decision tree (DT), support vector machine (SVM), k-nearest neighbour (KNN), and hierarchical deep network (HDnet) classifiers. The proposed predictor IGPred-HDnet was trained and tested using a 10-fold cross-validation and independent test. . The success rates in terms of accuracy (ACC) and Matthew's correlation coefficient (MCC) of IGPred-HDnet on training and independent dataset (D D) are ACC = 98.00%, 99.10%, and MCC = 0.958, and 0.980 points, respectively. The empirical outcomes demonstrate that the IGPred-HDnet model efficacy on both datasets using the novel FEGS feature and HDnet algorithm achieved superior predictions to other existing computational models. We hope this research will provide great insights into the large-scale identification of IGPs and pharmaceutical companies in new drug design.

摘要

免疫球蛋白蛋白(IGP)(也称为抗体)是作为 B 细胞受体对抗外部或内部抗原(如病毒和细菌)的糖蛋白。IGP 在从细胞黏附到细胞识别的各种细胞过程中发挥重要作用。通过计算机模拟方法鉴定 IGP 比湿实验室技术方法更快且更具成本效益。在这项研究中,我们开发了一种智能理论深度学习框架“IGPred-HDnet”,用于区分 IGP 和非 IGP。基于图形和统计特征(FEGS)、两亲性伪氨基酸组成(Amp-PseAAC)和二肽组成(DPC)的三种有前途的描述符用于提取图形、物理化学和序列特征。接下来,通过机器学习评估提取的属性,即决策树(DT)、支持向量机(SVM)、k-最近邻(KNN)和分层深度网络(HDnet)分类器。使用 10 折交叉验证和独立测试对预测器 IGPred-HDnet 进行了训练和测试。IGPred-HDnet 在训练和独立数据集(DD)上的准确率(ACC)和马修斯相关系数(MCC)的成功率分别为 ACC=98.00%、99.10%和 MCC=0.958 和 0.980 点。经验结果表明,在两个数据集上使用新型 FEGS 特征和 HDnet 算法的 IGPred-HDnet 模型在预测方面优于其他现有计算模型。我们希望这项研究能为大规模鉴定 IGP 以及制药公司在新药设计方面提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f1b/9891831/85a90cc2b875/CIN2023-2465414.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验