Suppr超能文献

PGAGP:基于自适应网络嵌入算法预测致病基因。

PGAGP: Predicting pathogenic genes based on adaptive network embedding algorithm.

作者信息

Zhang Yan, Xiang Ju, Tang Liang, Yang Jialiang, Li Jianming

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

School of Information Science and Engineering, Changsha Medical University, Changsha, China.

出版信息

Front Genet. 2023 Jan 20;13:1087784. doi: 10.3389/fgene.2022.1087784. eCollection 2022.

Abstract

The study of disease-gene associations is an important topic in the field of computational biology. The accumulation of massive amounts of biomedical data provides new possibilities for exploring potential relations between diseases and genes through computational strategy, but how to extract valuable information from the data to predict pathogenic genes accurately and rapidly is currently a challenging and meaningful task. Therefore, we present a novel computational method called PGAGP for inferring potential pathogenic genes based on an adaptive network embedding algorithm. The PGAGP algorithm is to first extract initial features of nodes from a heterogeneous network of diseases and genes efficiently and effectively by Gaussian random projection and then optimize the features of nodes by an adaptive refining process. These low-dimensional features are used to improve the disease-gene heterogenous network, and we apply network propagation to the improved heterogenous network to predict pathogenic genes more effectively. By a series of experiments, we study the effect of PGAGP's parameters and integrated strategies on predictive performance and confirm that PGAGP is better than the state-of-the-art algorithms. Case studies show that many of the predicted candidate genes for specific diseases have been implied to be related to these diseases by literature verification and enrichment analysis, which further verifies the effectiveness of PGAGP. Overall, this work provides a useful solution for mining disease-gene heterogeneous network to predict pathogenic genes more effectively.

摘要

疾病-基因关联研究是计算生物学领域的一个重要课题。大量生物医学数据的积累为通过计算策略探索疾病与基因之间的潜在关系提供了新的可能性,但如何从数据中提取有价值的信息以准确、快速地预测致病基因,目前是一项具有挑战性且有意义的任务。因此,我们提出了一种名为PGAGP的新型计算方法,用于基于自适应网络嵌入算法推断潜在致病基因。PGAGP算法首先通过高斯随机投影从疾病和基因的异质网络中高效、有效地提取节点的初始特征,然后通过自适应细化过程优化节点特征。这些低维特征用于改进疾病-基因异质网络,并且我们将网络传播应用于改进后的异质网络以更有效地预测致病基因。通过一系列实验,我们研究了PGAGP的参数和集成策略对预测性能的影响,并证实PGAGP优于现有最先进的算法。案例研究表明,通过文献验证和富集分析,许多针对特定疾病预测的候选基因已被暗示与这些疾病相关,这进一步验证了PGAGP的有效性。总体而言,这项工作为挖掘疾病-基因异质网络以更有效地预测致病基因提供了一个有用的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2afe/9895109/55221077b6bc/fgene-13-1087784-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验