Suppr超能文献

CommonNNClustering - 一个用于通用共同最近邻聚类的Python包。

CommonNNClustering─A Python Package for Generic Common-Nearest-Neighbor Clustering.

作者信息

Kapp-Joswig Jan-Oliver, Keller Bettina G

机构信息

Department of Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany.

出版信息

J Chem Inf Model. 2023 Feb 27;63(4):1093-1098. doi: 10.1021/acs.jcim.2c01493. Epub 2023 Feb 6.

Abstract

Density-based clustering procedures are widely used in a variety of data science applications. Their advantage lies in the capability to find arbitrarily shaped and sized clusters and robustness against outliers. In particular, they proved effective in the analysis of molecular dynamics simulations, where they serve to identify relevant, low-energetic molecular conformations. As such, they can provide a convenient basis for the construction of kinetic (core-set) Markov-state models. Here we present the open-source Python project CommonNNClustering, which provides an easy-to-use and efficient reimplementation of the common-nearest-neighbor (CommonNN) method. The package provides functionalities for hierarchical clustering and an evaluation of the results. We put our emphasis on a generic API design to keep the implementation flexible and open for customization.

摘要

基于密度的聚类方法在各种数据科学应用中被广泛使用。它们的优势在于能够找到任意形状和大小的聚类,并且对异常值具有鲁棒性。特别是,它们在分子动力学模拟分析中被证明是有效的,在该分析中用于识别相关的低能量分子构象。因此,它们可以为构建动力学(核心集)马尔可夫状态模型提供便利的基础。在这里,我们展示了开源Python项目CommonNNClustering,它提供了一种易于使用且高效的共同最近邻(CommonNN)方法的重新实现。该软件包提供了用于层次聚类和结果评估的功能。我们强调通用API设计,以使实现保持灵活并开放以供定制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验