Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA.
Thermo Fisher Scientific, Bremen, Germany.
Rapid Commun Mass Spectrom. 2023 Mar 15;37(5):e9444. doi: 10.1002/rcm.9444.
We report modifications to a commercial elemental analyzer-isotope ratio mass spectrometer that permit high-precision isotopic analysis of nanomoles of carbon (C), nitrogen (N), and sulfur (S) on a single sample without chemical or cryogenic trapping of gases. The sample size required for measurement by our system is about two orders of magnitude less than that for conventional analyses.
Our system builds on the analytical advancements offered by the EA IsoLink IRMS System and employs simple modifications to reduce the diameter of the flow path (reactors, water trap, and transfer lines), enhance peak separation (gas chromatography capillary column), and improve sample transfer to the ion source of the mass spectrometer (reduced flow rates).
Conventional precision (<0.2‰) can be achieved down to c. 500 nmol C, N, and S for samples analyzed without modification of the commercial system. Further reduction in sample size (<50 nmol C, N, and S) was achieved with minor modifications. There is a significant carbon blank and a small nitrogen blank that can be measured directly and a sulfur blank that can be calculated using regression. Only 30 nmol of N, 22 nmol of C, and 12 nmol of S are needed to achieve better than 1‰ precision (1σ) from a single measurement. Larger samples and more replicate measurements provide better precision.
The nano-EA method described here reduces sample size requirements by two orders of magnitude compared to traditional approaches and improves the accuracy and precision of isotope measurements on sample sizes less than 1 μmol. These advancements simplify the analytical technique and broaden the range and type of samples amenable to EA analysis.
我们报告了对商业元素分析仪-同位素比质谱仪的修改,这些修改允许在单个样品上对纳摩尔级的碳(C)、氮(N)和硫(S)进行高精度同位素分析,而无需对气体进行化学或低温捕集。我们系统所需的测量样品量比传统分析方法少两个数量级左右。
我们的系统基于 EA IsoLink IRMS 系统提供的分析进展,并采用简单的修改来减小流路(反应器、水阱和传输线)的直径,增强峰分离(气相色谱毛细管柱),并改善样品向质谱仪离子源的转移(降低流速)。
在不修改商业系统的情况下,对于未修改的样品,可以达到常规精度(<0.2‰),最低可分析 500 nmol C、N 和 S。通过较小的修改,可以进一步减小样品量(<50 nmol C、N 和 S)。存在显著的碳空白和小的氮空白,可以直接测量,硫空白可以使用回归计算。只需 30 nmol N、22 nmol C 和 12 nmol S 就可以从单个测量中达到优于 1‰精度(1σ)。更大的样品和更多的重复测量可以提供更好的精度。
与传统方法相比,这里描述的纳米 EA 方法将样品量要求降低了两个数量级,并提高了小于 1 μmol 样品的同位素测量的准确性和精度。这些进展简化了分析技术,并拓宽了可进行 EA 分析的样品范围和类型。